Simple Step-by-Step Guides to Solving Chemistry Problems

The MOLE

Nigel Freestone www.chemtextbook.com

The MOLE

The Mole is simply a number. Just as the term dozen refers to the number (12) twelve and a score to the number (20) twenty, the mole refers to the number 6.023 x 10^{23} . Thus 12 eggs is a dozen of eggs, 20 eggs is a score of eggs and 6.023×10^{23} eggs is a mole of eggs. Commonly referred to as Avogadro's constant, 6.023×10^{23} is the number of atoms found in exactly 12 grams of carbon-12. Carbon-12 is used as the standard from which atomic masses are measured: its mass number is 12 by definition. Since 12 g of carbon contains one mole of carbon atoms, the mass of one mole of any element is equal to its relative atomic mass in grams. Magnesium has relative atomic mass of 24. Therefore, one mole of magnesium has a mass of 24 g. Thus 24 g of magnesium contains 6.02×10^{23} = 3.987×10^{-23} g. Similarly, the mass of one mole of lithium atoms is 7g, 27 g of aluminium contains one mole of calcium, is 40g etc. You can also work with fractions (or multiples) of moles:

Mole/Mass Relationship Examples Using Magnesium							
Moles Magnesium	Number of Magnesium Atoms	Mass of Magnesium					
0.25	1.505 x 10 ²³	6 g					
0.5	3.01 x 10 ²³	12 g					
1	6.02 x 10 ²³	24 g					
2	1.204 x 10 ²⁴	48 g					
10	6.02 x 10 ²⁴	240 g					
50	3.01 x 10 ²⁵	1200 g					

Some elements exist as molecules rather than atoms. The following elements all exist as diatomic molecules: hydrogen (H₂), nitrogen (N₂), oxygen (O₂) and the halogens (F₂, Cl₂, Br₂, I₂). Hydrogen has a relative atomic mass of 1. Therefore, the relative formula mass of (M_r) of H₂ = (2 x 1) = 2. Therefore, one mole of hydrogen molecules will have a mass of 2g and will cont 6.02 x 10²³ molecules of hydrogen. Oxygen has a relative atomic mass of 16. Thus, one mole of oxygen gas (O₂) has a mass of 32 g and 6.02 x 10²³ molecules of nitrogen gas (N₂) have a mass of 28g.

The concept of a mole is equally applicable to compounds as well as elements. One mole of a compound is its relative formula mass (M_r) in grams. To avoid any ambiguity, it is convenient to use the term **formula unit**. Formula unit refers to the smallest repeating unit of a substance and is the chemical formula normally used for the substance. For instance, the formula unit of graphite is an atom of carbon (C). Similarly, the formula unit of oxygen gas is an oxygen molecule (O₂); NaCl is the formula unit for the ionic compound sodium chloride and the formula unit for silicon dioxide is SiO₂. Equimolar amounts of substances contain the same number of formula units. Thus 0.5 moles any substance will contain the same number of formula units (particles), i.e. $0.5 \times 6.02 \times 10^{23} = 3.01 \times 10^{23}$.

The idea of the **mole** links the **mass of a substance** to the **number of formula units** (particles) it contains. The mass of one mole of an element or compound is referred to as its **molar mass**, which is its **relative atomic mass (A**_r) or **relative formula mass (M**_r) in grams.

Molar Mass (M_r) = Relative Formula Mass in grams (g mol⁻¹)

If you have *m* grams of a substance which has a molar mass of M_r g mol⁻¹, then the amount of a substance in moles, *n*, is given by: -

Number of moles = Mass (g) / Molar Mass (g mol⁻¹)

Also,

Number of formula units (particles) = Number of moles x 6.23 x 10²³

Thus, if you know the values of any two of n, m or M_r you can calculate the third using the equations above.

Water has a relative formula mass of 18. Thus:

- one mole of water has a mass of 18 g
- 18 g of water contains 6.02 x 10²³ formula units of water
- 0.5 moles of water has a mass of 9g
- one molecule of water has a mass of $18/(6.02 \times 10^{23}) = 2.99 \times 10^{-23} \text{ g}$

Example 1: Determine the mass of one mole of O₂?

Answer

Relative formula mass of $O_2 = (2 \times 16) = 32$ Mass of one mole, i.e. molar mass = M_r in g Molar Mass, $M_r [O_{2]} = 32 \text{ g mol}^{-1}$

Example 2: What is the mass of 0.05 moles of ammonium sulfate?

Answer

Relative formula mass of $(NH_4)_2SO_4 = (2 \times 14) + (8 \times 1) + 32 + (4 \times 16) = 132$ Mass of one mole, i.e. molar mass = M_r in g Molar Mass, $M_r [(NH_4)_2SO_4] = 132$ g mol⁻¹ Therefore, 0.05 moles of ammonium sulfate has a mass of $132 \times 0.05 = 6.6$ g **Example 3**: How many moles of substance are present in 0.250 g of calcium carbonate?

Answer

Relative formula mass of $CaCO_3 = 40 + 12 + (3 \times 16) = 100$ Mass of one mole, i.e. molar mass = M_r in g Molar Mass, M_r [CaCO₃] = 100g mol⁻¹ So, the number of moles of CaCO₃ in 0.250 g = mass/ M_r = 0.250/100 = **2.5 x 10⁻³** moles

Example 4: How many formula units are present in 9 g of KNO₃?

Answer

Relative formula mass of $KNO_3 = 39 + 14 + (3 \times 16) = 101$ Mass of one mole, i.e. molar mass = M_r ing Molar Mass, $Mr (KNO_3) = 101g$ Number of moles of KNO_3 in 9g = mass/ $M_r = 9/101 = 0.09$ One mole of a substance contains 6.02×10^{23} formula unit particles Therefore, the number of formula particle units in 0.09 moles = number of moles $\times 6.02 \times 10^{23} = 0.09 \times 6.02 \times 10^{23} = 45.41 \times 10^{22}$

Example 5: An average person's respiration generates approximately 37.5 g of carbon dioxide per hour. How many molecules are in 37.5 g of carbon dioxide (CO₂)?

Answer

 $M_r [CO_2] = 44 \text{ g mol}^{-1}$ Number of moles of CO₂ in 37.5 g = mass/ M_r = 37.5/44 = 0.85 moles One mole of CO₂ contains 6.02 x 10²³ molecules of CO₂ Therefore, number of molecules of CO₂ in 0.85 moles = number of moles x 6.02 x 10²³ = 0.85 x 6.02 x 10²³ = **5.12 x 10²³**

Example 6: What mass of ozone (O_3) contains 3.67 x 10²² molecules of O_3 ?

Answer

 $M_r [O_3] = 48 \text{ g mol}^{-1}$ Thus 48 g of O₃ contains 6.02 x 10²³ molecules of ozone One molecule of O₃ will have a mass of 48 / (6.02 x 10²³) Therefore, 3.67 x 10²² molecules of O₃ will have a mass of 48 / (6.02 x 10²³) x 3.67 x 10²² = 2.93 g

Example 7: Complete the following table relating to calcium carbonate

Substance	Mr	Number of moles (n)	Mass in grams (m)	Number of particles
Carbon dioxide, CO ₂	i)	1.5	vii)	X)
Nitrogen, N ₂	ii)	V)	7	xi)
Sulfur Dioxide, SO ₂	iii)	0.15	viii)	xii)
Ethanol, C₂H₅OH	iv)	vi)	ix)	1.2 x 10 ²¹

Answers:

Substance	Mr	Number of moles (n)	Mass in grams (m)	Number of particles
Carbon dioxide, CO ₂	44	1.5	66	9.03 x 10 ²³
Nitrogen, N ₂	28	0.25	7	1.505 x 10 ²³
Sulfur Dioxide, SO ₂	64	0.15	9.6	9.03 x 10 ²²
Ethanol, C ₂ H ₅ OH	46	0.002	0/09	1.2 x 10 ²¹

M_r values

i) $M_r [CO_2] = 12 + (2 \times 16) = 44$ ii) $M_r [N_2] = (2 \times 14) = 28$ iii) $M_r [SO_2] = 32 + (2 \times 16) = 64$ iv) $M_r [C_2H_5OH] = (2 \times 12) + (5 \times 1) + 16 + 1 = 46$

Number of moles

Number of formula units (particles) = Number of moles x 6.23×10^{23} v) Number of moles in 7g N₂ = mass/M_r = 7/28 = 0.25 vi) Number of moles in 1.2 x 10^{21} particles of C₂H₅OH = number of particles/6.02 x 10^{23} = 1.2 x $10^{21}/6.02 \times 10^{23}$ = 0.002

Mass in grams

Mass (g) = Number of moles x M_r vii) Mass of 1.5 moles of CO_2 = number of moles x M_r = 1.5 x 44 = 66 viii) Mass of 0.15 moles SO_2 = number of moles x M_r =0.15 x 64 = 9.6g

Number of particles

Number of formula units (particles) = Number of moles x 6.23×10^{23} x) Number of particles in 1.5 moles CO₂ = number of moles x 6.02×10^{23} = 9.03 x 10^{23} xi) Number of moles in 7g N₂ = mass/M_r = 7/28 = 0.25

Number of particles in 0.25 moles CO_2 = number of moles x 6.02 x 10^{23} = 0.25 x 6.02×10^{23} = 1.505 x 10^{23}

xii) Number of particles in 0.15 moles of SO₂ = number of moles x 6.02 x 10^{23} = 9.03 x 10^{22}

In summary, a mole always contains the same number of formula units (particles) regardless of the substance. But, the mass of a mole differs from substance to substance, and is the relative formula mass expressed in grams. Really the mole is just a collective term like the dozen. A dozen elephants weigh more than a dozen mice, but we have the same number of each.

It is very important to state the particles you are referring to when talking about moles. A mole of oxygen could refer to a mole of oxygen atoms or to a mole of gas, which is diatomic (O₂). So, a mole of oxygen atoms (O) will have a mass of 16g, while a mole of oxygen gas (O₂) has a mass of 16 x 2 = 32g.

The concept of the mole is useful because the size and mass of atoms are so small; hence Avogadro's number is so large.

PRACTICE PROBLEMS

Exercise 1

Calculate the molar masses (M_r) of the following:-

- a) Chlorine, Cl₂
- b) Sulfur dioxide, SO₂
- c) Zinc nitrate, Zn(NO₃)₂
- d) Magnesium carbonate, MgCO₃
- e) Oxalic acid, C₂H₄O₂
- f) Calcium chloride, CaCl₂
- g) Aluminium sulphate, Al₂(SO₄)₃
- h) Sulfuric acid, H₂SO₄
- i) Potassium manganate (VII), KMnO₄
- j) Sodium chromate (VI), Na₂CrO₄

2 Exercise 2

How many moles of substance are present in the following?

- a) 5.30 g of sodium carbonate, Na₂CO₃
- b) 0.35 g of zinc nitrate, $Zn(NO_3)_2$
- c) 0.008 g of sodium hydroxide, NaOH
- d) 1.25 g of calcium carbonate, $CaCO_3$
- e) 3.5 g of benzene, C_6H_6
- f) 12 g of glucose, $C_6H_{12}O_6$
- g) 1g of uranium dioxide, UO₂
- h) 0.3 g aluminium sulphate, Al₂(SO₄)₃
- i) 1.2 g iron (III) oxide, Fe₂O₃
- *j*) 3.4 g sulphur trioxide, SO₃

Exercise 3

How many formula units are present in the following?

- a) 0.25 moles of Cl_2
- b) 5 moles of CO_2
- c) $10g of CaCO_3$
- d) 2.45 x 10^{-3} moles of NH₃
- e) 0.34 kg of Fe₃O₄
- f) 2.56 moles of C_6H_6
- g) 1 x 10⁻⁶ g of Au
- h) 0.12 moles of CuSO₄
- i) 1 tonne of N_2

j) 4.45 x 10⁻⁶ moles of (NH₄)₂CO₃

Exercise 4: Determine the mass of the following:

- a) 2 moles of carbon dioxide, CO₂
- b) 0.01 moles of nitrogen dioxide, NO₂
- c) 1×10^{-5} moles of benzene, C_6H_6
- d) 2.03×10^{-3} moles of uranium dioxide, UO₂
- e) 1.12 moles of sulphuric acid, H₂SO₄
- f) 3 x 10⁻⁴ moles of calcium carbonate, CaCO₃
- g) 1.2 moles of ethane, C_2H_4
- h) 0.5 moles ethanoic acid, CH₃COOH
- i) 1.25 x 10⁻³ moles sodium hydroxide, NaOH
- *j*) 0.025 moles potassium dichromate, K₂Cr₂O₇

Practice Problems Mole Answers

Exercise 1: Calculate the molar masses (M_i) of the following:-

Molar Mass = Relative Formula Mass (M_r) in g

Answers

- a) Cl₂ = (35.5 x 2) = **71 g**
- b) $SO_2 = 32 + (16 \times 2) = 64 g$
- c) $Zn(NO_3)_2 = 65 + \{2 \times (14 + (16 \times 3))\} = 189 g$
- d) MgCO₃ = $24 + 12 + (16 \times 3) = 84 g$
- e) $C_2H_4O_2 = (2 \times 2) + (1 \times 4) + (16 \times 2) = 60 \text{ g}$
- f) $CaCl_2 = 40 + (35.5 \times 2) = 111g$
- g) $AI_2(SO_4)_3 = (27 \times 2) + \{3 \times (32 + (16 \times 4))\} = 342 g$
- h) $H_2SO_4 = \{(1 x2) + 32 + (16 x 4)\} = 98 g$
- i) KMnO₄ = {39 +55 + (16 x 4)} = **158 g**
- j) Na₂CrO₄ = {(23 x2) + 52 + (16 x 4)} = **162 g**

Exercise 2: How many moles of substance are present in the following?

Number of Moles = Mass/Mr

a) 5.30 g of sodium carbonate, Na₂CO₃

Answer

 M_r [Na(CO₃)₂] = 106 g mol⁻¹ Number of moles in 5.3 g of sodium carbonate = mass/M_r = 5.3/106 = **0.05**

b) 0.35 g of zinc nitrate, Zn(NO₃)₂

Answer

 $M_r [Zn(NO_3)_2] = 189 \text{ g mol}^{-1}$ Number of moles in 0.35 g of zinc nitrate = mass/ $M_r = 0.35/189 = 1.85 \times 10^{-3}$ c) 0.008 g of sodium hydroxide, NaOH

Answer

```
M_r [NaOH] = 40 g mol<sup>-1</sup>
Number of moles in 0.008g of sodium hydroxide = mass/M_r = 0.008/40 = 2 x 10<sup>-4</sup>
```

d) 1.25 g of calcium carbonate, CaCO₃

Answer

```
M_r [CaCO<sub>3</sub>] = 100 g mol<sup>-1</sup>
Number of moles in 1.25g of calcium carbonate = mass/M_r = 1.25/100 = 0.0125
```

e) 3.5 g of benzene, C_6H_6

Answer

 $M_r [C_6H_6] = 78 \text{ g mol}^{-1}$ Number of moles of benzene in 3.5g = mass/ M_r = 3.5/78 = **0.045**

f) 12 g of glucose, $C_6H_{12}O_6$

Answer

 $M_r [C_6H_{12}O_6] = 180 \text{ g mol}^{-1}$ Number of moles in 12g of glucose = mass/ M_r = 12/180 = **0.067**

g) 1g of uranium dioxide, UO₂

Answer

 M_r [UO₂] = 270 g mol⁻¹ Number of moles in 1g of uranium dioxide = mass/ M_r = 1/270 = **3.7 x 10**-³

h) 0.3 g aluminium sulphate, Al₂(SO₄)₃

Answer

 $M_r [Al_2(SO_4)_{3]} = 342 \text{ g mol}^{-1}$ Number of moles in 0.3g aluminium sulphate = mass/ $M_r = 0.3/342 = 8.77 \times 10^{-1}$

i) 1.2 g iron (III) oxide, Fe₂O₃

Answer

 M_r [Fe₂O₃] = 160 g mol⁻¹ Number of moles in 1.2 g iron (III) oxide = mass/ M_r = 1.2/160 = **7.5 x 10⁻³**

j) 3.4 g sulphur trioxide, SO₃

Answer

 M_r [SO₃] = 80 g mol⁻¹ Number of moles in 3.4 g sulphur trioxide, SO₃ = mass/M_r=3.4 /80 = **0.0425**

Exercise 3 How many formula units are present in the following?

Number of formula units = Number of moles x 6.02 x 10²³

a) 0.25 moles of Cl_2

Answer

Number of molecules of Cl_2 in 0.25 moles = 0.25 x 6.02 x 10^{23} = **1.51 x 10^{23}**

b) 5 moles of CO_2

Answer

Number of molecules of CO₂ in 5 moles = 5 x 6.02 x 10²³ = **3.01 x 10²⁴**

c) $10g of CaCO_3$

Answer

 M_r [CaCO₃] = 100 Number of moles in 10g of CaCO₃ = mass/Mr = 10/100 = 0.1 Number of formula units in 10g of CaCO₃ = 0.1 x 6.02 x 10²³ = **6.02 x 10²²**

d) 2.45 x 10^{-3} moles of NH₃

Answer

Number of formula units (molecules) of NH₃ in 2.45 x 10⁻³ moles = 2.45 x 10⁻³ x 6.02×10^{23} = **1.48 x 10²¹**

e) 0.34 kg of Fe₃O₄

Answer

 M_r [Fe₃O₄] = 232 Number of moles of Fe₃O₄ in 340 g (0.34 kg) = mass/M_r = 340/232 = 1.47 Number of formula units in 0.24 kg of Fe₃O₄ = 1.47 x 6.02 x 10²³ = **8.85 x 10²³**

f) 2.56 moles of C_6H_6

Answer

Number of particles (molecules) in 2.56 moles of $C_6H_6 = 2.56 \times 6.02 \times 10^{23} =$ **1.54 x 10²⁴**

g) 1 x 10⁻⁶ g of Au

Answer

Number of moles of Au in 1×10^{-6} g = $1 \times 10^{-6}/197 = 5.08 \times 10^{-9}$ Number of atoms of Au in 1×10^{-6} g = $5.08 \times 10^{-9} \times 6.02 \times 10^{23}$ = **3.06 x 10^{15**

h) 0.12 moles of CuSO₄

Answer

Number of formula units of CuSO₄ in 0.12 moles = $0.12 \times 6.02 \times 10^{23}$ = **7.22 x 10**²²

i) 1 tonne of N_2

Answer

 $M_r [N_2] = 28$ Number of moles of N₂ in 1000 g (1 tonne) = 1000/28 = 35.7 Number of formula units in 1 tonne N₂ = 35.7 x 6.02 x 10²³ = **2.15 x 10²⁵**

j) 4.45 x 10⁻⁶ moles of (NH₄)₂CO₃

Answer

Number of formula units in 4.45 x 10⁻⁶ moles of (NH₄)₂CO₃ =4.45 x 10⁻⁶ x 6.02 x 10^{23} = **2.68 x 10¹⁸**

Exercise 4: Determine the mass of the following:

Mass = Number of Moles x M_r

a) 2 moles of carbon dioxide, CO₂

Answer

 M_r [CO₂] = 44 g mol⁻¹ Mass of 2 moles of carbon dioxide = number of moles x M_r = 2 x 44 = **88 g**

b) 0.01 moles of nitrogen dioxide, NO₂

Answer

```
M_r [NO<sub>2</sub>] = 48 g mol<sup>-1</sup>
Mass of 0.01 moles of nitrogen dioxide = number of moles x M_r = 0.01 x 46 = 0.46 g
```

c) 1×10^{-5} moles of benzene, C_6H_6

Answer

```
M_r [C_6H_6 = 78 \text{ g mol}^{-1}]
Mass of 1 x 10<sup>-5</sup> moles of benzene = number of moles x M_r = 1 \times 10^{-5} \times 78 = 7.8 \times 10^{-4} \text{ g}
```

d) 2.03 x 10^{-3} moles of uranium dioxide, UO₂

Answer

 M_r [UO₂] = 270 g mol⁻¹ Mass of 2.03 x 10⁻³ moles of uranium dioxide = number of moles x M_r = 2.03 x 10⁻³ x 270 = **0.55 g**

e) 1.12 moles of sulphuric acid, H₂SO₄

Answer

 M_r [H₂SO₄] = 98 g mol⁻¹ Mass of 1.12 moles of sulfuric acid = number of moles x M_r = 1.12 x 98 = **109.76 g**

f) 3 x 10⁻⁴ moles of calcium carbonate, CaCO₃

Answer

 M_r [CaCO₃] = 100 g mol⁻¹ Mass of 3 x 10⁻⁴ moles of calcium carbonate= number of moles x M_r = 3 x 10⁻⁴ x 100 = **0.03 g** g) 1.2 moles of ethane, C₂H₄

Answer

 $M_r [C_2H_4] = 28 \text{ g mol}^{-1}$ Mass of 1.2 moles of ethane = number of moles x $M_r = 1.2 \times 28 = 33.6 \text{ g}$

h) 0.5 moles ethanoic acid, CH₃COOH

Answer

 M_r [CH₃COOH] = 60 g mol⁻¹ Mass of 0.5 moles ethanoic acid = number of moles x M_r =0.5 x 60 = **30 g**

i) 1.25 x 10⁻³ moles sodium hydroxide, NaOH

Answer

 M_r [NaOH] = 40 g mol⁻¹ Mass of 1.25 x 10⁻³ moles of sodium hydroxide = number of moles x M_r = 1.25 x 10⁻³ x 40 = **0.05 g**

j) 0.025 moles potassium dichromate, K₂Cr₂O₇

Answer

 $M_r [K_2Cr_2O_7] = 294 \text{ g mol}^{-1}$ Mass of 0.025 moles of potassium dichromate = number of moles x $M_r = 0.025$ x 294 = **7.35 g**