

The MOLE

Nigel Freestone
www.chemtextbook.com

The MOLE

The Mole is simply a number. Just as the term dozen refers to the number (12) twelve and a score to the number (20) twenty, the mole refers to the number6.023 $\times 10^{23}$. Thus 12 eggs is a dozen of eggs, 20 eggs is a score of eggs and 6.023×10^{23} eggs is a mole of eggs. Commonly referred to as Avogadro's constant, 6.023×10^{23} is the number of atoms found in exactly 12 grams of carbon-12. Carbon-12 is used as the standard from which atomic masses are measured: its mass number is 12 by definition. Since 12 g of carbon contains one mole of carbon atoms, the mass of one mole of any element is equal to its relative atomic mass in grams. Magnesium has relative atomic mass of 24 . Therefore, one mole of magnesium has a mass of 24 g . Thus 24 g of magnesium contains 6.02×10^{23} magnesium atoms and the mass of one atom of magnesium $=24 /\left(6.02 \times 10^{23}\right)=3.987 \times 10^{-23}$ g . Similarly, the mass of one mole of lithium atoms is $7 \mathrm{~g}, 27 \mathrm{~g}$ of aluminium contains one mole of atoms and the mass of one mole of calcium, is 40 g etc. You can also work with fractions (or multiples) of moles:

Mole/Mass Relationship Examples Using Magnesium		
Moles Magnesium	Number of Magnesium Atoms	Mass of Magnesium
0.25	1.505×10^{23}	6 g
0.5	3.01×10^{23}	12 g
1	6.02×10^{23}	24 g
2	1.204×10^{24}	48 g
10	6.02×10^{24}	240 g
50	3.01×10^{25}	1200 g

Some elements exist as molecules rather than atoms. The following elements all exist as diatomic molecules: hydrogen $\left(\mathrm{H}_{2}\right)$, nitrogen $\left(\mathrm{N}_{2}\right)$, oxygen $\left(\mathrm{O}_{2}\right)$ and the halogens ($\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$).. Hydrogen has a relative atomic mass of 1. Therefore, the relative formula mass of $\left(M_{r}\right)$ of $H_{2}=(2 \times 1)=2$. Therefore, one mole of hydrogen molecules will have a mass of 2 g and will cont 6.02×10^{23} molecules of hydrogen. Oxygen has a relative atomic mass of 16 . Thus, one mole of oxygen gas $\left(\mathrm{O}_{2}\right)$ has a mass of 32 g and 6.02×10^{23} molecules of nitrogen gas $\left(\mathrm{N}_{2}\right)$ have a mass of 28 g .

The concept of a mole is equally applicable to compounds as well as elements. One mole of a compound is its relative formula mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ in grams. To avoid any ambiguity, it is convenient to use the term formula unit. Formula unit refers to the smallest repeating unit of a substance and is the chemical formula normally used for the substance. For instance, the formula unit of graphite is an atom of carbon (C). Similarly, the formula unit of oxygen gas is an oxygen molecule (O_{2}); NaCl is the formula unit for the ionic compound sodium chloride and the formula unit for silicon dioxide is SiO_{2}.

Equimolar amounts of substances contain the same number of formula units. Thus 0.5 moles any substance will contain the same number of formula units (particles), i.e. $0.5 \times 6.02 \times 10^{23}=3.01 \times 10^{23}$.

The idea of the mole links the mass of a substance to the number of formula units (particles) it contains. The mass of one mole of an element or compound is referred to as its molar mass, which is its relative atomic mass (A_{r}) or relative formula mass ($\mathbf{M}_{\mathbf{r}}$) in grams.

$$
\text { Molar Mass }\left(\mathrm{M}_{\mathrm{r}}\right)=\text { Relative Formula Mass in grams }\left(\mathrm{g} \mathrm{~mol}^{-1}\right)
$$

If you have m grams of a substance which has a molar mass of $\mathrm{Mr}_{\mathrm{r}} \mathrm{g} \mathrm{mol}^{-1}$, then the amount of a substance in moles, n, is given by: -

$$
\text { Number of moles = Mass }(\mathrm{g}) / \text { Molar Mass }\left(\mathrm{g} \mathrm{~mol}^{-1}\right)
$$

Also,
Number of formula units (particles) = Number of moles x 6.23×10^{23}

Thus, if you know the values of any two of n, m or M_{r} you can calculate the third using the equations above.

Water has a relative formula mass of 18 . Thus:

- one mole of water has a mass of 18 g
- 18 g of water contains 6.02×10^{23} formula units of water
- 0.5 moles of water has a mass of 9 g
- one molecule of water has a mass of $18 /\left(6.02 \times 10^{23}\right)=2.99 \times 10^{-23} \mathrm{~g}$

Example 1: Determine the mass of one mole of O_{2} ?

Answer
Relative formula mass of $\mathrm{O}_{2}=(2 \times 16)=32$
Mass of one mole, i.e. molar mass $=M_{r}$ ing
Molar Mass, $\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{O}_{2}\right]=\mathbf{3 2} \mathbf{~ g ~ m o l}^{-1}$

Example 2: What is the mass of 0.05 moles of ammonium sulfate?

Answer

Relative formula mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=(2 \times 14)+(8 \times 1)+32+(4 \times 16)=132$
Mass of one mole, i.e. molar mass $=\mathrm{M}_{\mathrm{r}}$ ing
Molar Mass, $\mathrm{Mr}_{\mathrm{r}}\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]=132 \mathrm{~g} \mathrm{~mol}^{-1}$
Therefore, 0.05 moles of ammonium sulfate has a mass of $132 \times 0.05=\mathbf{6 . 6} \mathbf{g}$

Example 3: How many moles of substance are present in 0.250 g of calcium carbonate?

Answer

Relative formula mass of $\mathrm{CaCO}_{3}=40+12+(3 \times 16)=100$
Mass of one mole, i.e. molar mass $=\mathrm{M}_{\mathrm{r}}$ ing
Molar Mass, $\mathrm{M}_{\mathrm{r}}\left[\mathrm{CaCO}_{3}\right]=100 \mathrm{~g} \mathrm{~mol}^{-1}$
So, the number of moles of CaCO_{3} in $0.250 \mathrm{~g}=$ mass $/ \mathrm{M}_{\mathrm{r}}=0.250 / 100=\mathbf{2 . 5} \mathbf{\times 1 0 ^ { - 3 }}$ moles

Example 4: How many formula units are present in 9 g of KNO_{3} ?
Answer
Relative formula mass of $\mathrm{KNO}_{3}=39+14+(3 \times 16)=101$
Mass of one mole, i.e. molar mass $=\mathrm{M}_{\mathrm{r}}$ ing
Molar Mass, $\mathrm{Mr}\left(\mathrm{KNO}_{3}\right)=101 \mathrm{~g}$
Number of moles of KNO_{3} in $9 \mathrm{~g}=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=9 / 101=0.09$
One mole of a substance contains 6.02×10^{23} formula unit particles
Therefore, the number of formula particle units in 0.09 moles $=$ number of moles $\times 6.02 \times 10^{23}=0.09 \times 6.02 \times 10^{23}=45.41 \times 10^{22}$

Example 5: An average person's respiration generates approximately 37.5 g of carbon dioxide per hour. How many molecules are in 37.5 g of carbon dioxide $\left(\mathrm{CO}_{2}\right)$?

Answer

$\mathrm{Mr}\left[\mathrm{CO}_{2}\right]=44 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of CO_{2} in $37.5 \mathrm{~g}=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=37.5 / 44=0.85$ moles
One mole of CO_{2} contains 6.02×10^{23} molecules of CO_{2}
Therefore, number of molecules of CO_{2} in 0.85 moles $=$ number of moles $\times 6.02 \times$ $10^{23}=0.85 \times 6.02 \times 10^{23}=5.12 \times 10^{23}$

Example 6: What mass of ozone $\left(\mathrm{O}_{3}\right)$ contains 3.67×10^{22} molecules of O_{3} ?

```
Answer
Mr [O_3] = 48 g mol
Thus 48 g of O}\mp@subsup{\textrm{O}}{3}{}\mathrm{ contains 6.02 }\times1\mp@subsup{0}{}{23}\mathrm{ molecules of ozone
One molecule of O}\mp@subsup{O}{3}{}\mathrm{ will have a mass of 48/(6.02 < 1023)
Therefore, 3.67 \times1022 molecules of O}\mp@subsup{\textrm{O}}{3}{}\mathrm{ will have a mass of 48 / (6.02 < 1023) x 3.67
x 1022 = 2.93g
```

Example 7: Complete the following table relating to calcium carbonate

Substance	Mr	Number of moles (n)	Mass in grams (m)	
Carbon dioxide, CO_{2}	i)	1.5	vii)	Number of particles
Nitrogen, N_{2}	ii)	v)	7	x)
Sulfur Dioxide, SO_{2}	iii)	0.15	viii)	xi)
Ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	iv)	vi)	ix)	1.2×10^{21}

Answers:

Substance	M_{r}	Number of moles (n)	Mass in grams (m)	Number of particles
Carbon dioxide, CO_{2}	44	1.5	66	9.03×10^{23}
Nitrogen, N_{2}	28	0.25	7	1.505×10^{23}
Sulfur Dioxide, SO_{2}	64	0.15	9.6	9.03×10^{22}
Ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	46	0.002	$0 / 09$	1.2×10^{21}

M_{r} values

i) $\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{CO}_{2}\right]=12+(2 \times 16)=44$
ii) $\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{N}_{2}\right]=(2 \times 14)=28$
iii) $\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{SO}_{2}\right]=32+(2 \times 16)=64$
iv) $\mathrm{M}_{\mathrm{r}}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=(2 \times 12)+(5 \times 1)+16+1=46$

Number of moles

Number of formula units (particles) $=$ Number of moles $\times 6.23 \times 10^{23}$
v) Number of moles in $7 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=7 / 28=0.25$
vi) Number of moles in 1.2×10^{21} particles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=$ number of particles $/ 6.02 \mathrm{x}$ $10^{23}=1.2 \times 1021 / 6.02 \times 10^{23}=0.002$

Mass in grams

Mass (g) = Number of moles $\times \mathrm{M}_{\mathrm{r}}$
vii) Mass of 1.5 moles of $\mathrm{CO}_{2}=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=1.5 \times 44=66$
viii) Mass of 0.15 moles $\mathrm{SO}_{2}=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=0.15 \times 64=9.6 \mathrm{~g}$

Number of particles

Number of formula units (particles) $=$ Number of moles $\times 6.23 \times 10^{23}$
x) Number of particles in 1.5 moles $\mathrm{CO}_{2}=$ number of moles $\times 6.02 \times 10^{23}=9.03 \times$ 10^{23}
xi) Number of moles in $7 \mathrm{~g} \mathrm{~N}_{2}=$ mass $/ \mathrm{M}_{\mathrm{r}}=7 / 28=0.25$

Number of particles in 0.25 moles $\mathrm{CO}_{2}=$ number of moles $\times 6.02 \times 10^{23}=0.25 \times$ $6.02 \times 10^{23}=1.505 \times 10^{23}$
xii) Number of particles in 0.15 moles of $\mathrm{SO}_{2}=$ number of moles $\times 6.02 \times 10^{23}=$ 9.03×10^{22}

In summary, a mole always contains the same number of formula units (particles) regardless of the substance. But, the mass of a mole differs from substance to substance, and is the relative formula mass expressed in grams. Really the mole is just a collectiveterm like the dozen. A dozen elephantsweigh more than a dozen mice, but we have the same number of each.

It is very important to state the particles you are referring to when talking about moles. A mole of oxygen could refer to a mole of oxygen atoms or to a mole of gas, which is diatomic $\left(\mathrm{O}_{2}\right)$. So, a mole of oxygen atoms (O) will have a mass of 16 g , while a mole of oxygen gas $\left(\mathrm{O}_{2}\right)$ has a mass of $16 \times 2=32 \mathrm{~g}$.

The concept of the mole is usefulbecause the size and mass of atoms are so small; hence Avogadro's number is so large.

? PRACTICE PROBLEMS

Exercise 1

Calculate the molar masses $\left(M_{r}\right)$ of the following:-
a) Chlorine, Cl_{2}
b) Sulfur dioxide, SO_{2}
c) Zinc nitrate, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
d) Magnesium carbonate, MgCO_{3}
e) Oxalic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
f) Calcium chloride, CaCl_{2}
g) Aluminium sulphate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
h) Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$
i) Potassium manganate (VII), KMnO_{4}
j) Sodium chromate (VI), $\mathrm{Na}_{2} \mathrm{CrO}_{4}$

$?$ Exercise 2

How many moles of substance are present in the following?
a) 5.30 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$
b) 0.35 g of zinc nitrate, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
c) 0.008 g of sodium hydroxide, NaOH
d) 1.25 g of calcium carbonate, CaCO_{3}
e) 3.5 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$
f) 12 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
g) 1 g of uranium dioxide, UO_{2}
h) 0.3 g aluminium sulphate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
i) 1.2 g iron (III) oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$
j) 3.4 g sulphur trioxide, SO_{3}

$?$ Exercise 3

How many formula units are present in the following?
a) 0.25 moles of Cl_{2}
b) 5 moles of CO_{2}
c) $10 \mathrm{gof} \mathrm{CaCO}_{3}$
d) 2.45×10^{-3} moles of NH_{3}
e) 0.34 kg of $\mathrm{Fe}_{3} \mathrm{O}_{4}$
f) 2.56 moles of $\mathrm{C}_{6} \mathrm{H}_{6}$
g) $1 \times 10^{-6} \mathrm{~g}$ of Au
h) $0.12{\text { moles of } \mathrm{CuSO}_{4}}^{2}$
i) 1 tonne of N_{2}
j) 4.45×10^{-6} moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

2
Exercise 4: Determine the mass of the following:
a) 2 moles of carbon dioxide, CO_{2}
b) 0.01 moles of nitrogen dioxide, NO_{2}
c) 1×10^{-5} moles of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$
d) 2.03×10^{-3} moles of uranium dioxide, UO_{2}
e) 1.12 moles of sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$
f) 3×10^{-4} moles of calcium carbonate, CaCO_{3}
g) 1.2 moles of ethane, $\mathrm{C}_{2} \mathrm{H}_{4}$
h) 0.5 moles ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$
i) 1.25×10^{-3} moles sodium hydroxide, NaOH
j) 0.025 moles potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

? Practice Problems Mole Answers

Exercise 1: Calculate the molar masses (M_{r}) of the following:-

Molar Mass = Relative Formula Mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ in g

Answers
a) $\mathrm{Cl}_{2}=(35.5 \times 2)=\mathbf{7 1} \mathbf{g}$
b) $\mathrm{SO}_{2}=32+(16 \times 2)=\mathbf{6 4} \mathbf{g}$
c) $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}=65+\{2 \times(14+(16 \times 3))\}=\mathbf{1 8 9} \mathbf{g}$
d) $\mathrm{MgCO}_{3}=24+12+(16 \times 3)=\mathbf{8 4} \mathbf{g}$
e) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}=(2 \times 2)+(1 \times 4)+(16 \times 2)=\mathbf{6 0} \mathbf{g}$
f) $\mathrm{CaCl}_{2}=40+(35.5 \times 2)=\mathbf{1 1 1} \mathrm{g}$
g) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=(27 \times 2)+\{3 \times(32+(16 \times 4))\}=\mathbf{3 4 2} \mathbf{g}$
h) $\mathrm{H}_{2} \mathrm{SO}_{4}=\{(1 \mathrm{x} 2)+32+(16 \times 4)\}=\mathbf{9 8} \mathbf{g}$
i) $\mathrm{KMnO}_{4}=\{39+55+(16 \times 4)\}=\mathbf{1 5 8} \mathbf{g}$
j) $\mathrm{Na}_{2} \mathrm{CrO}_{4}=\{(23 \times 2)+52+(16 \times 4)\}=\mathbf{1 6 2} \mathbf{g}$

Exercise 2: How many moles of substance are present in the following?
Number of Moles = Mass/Mr
a) 5.30 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{Na}\left(\mathrm{CO}_{3}\right)_{2}\right]=106 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 5.3 g of sodium carbonate $=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=5.3 / 106=\mathbf{0 . 0 5}$
b) 0.35 g of zinc nitrate, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\right]=189 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 0.35 g of zinc nitrate $=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=0.35 / 189=\mathbf{1 . 8 5} \times \mathbf{1 0}^{-\mathbf{3}}$
c) 0.008 g of sodium hydroxide, NaOH

Answer
$\mathrm{Mr}_{\mathrm{r}}[\mathrm{NaOH}]=40 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 0.008 g of sodium hydroxide $=$ mass $/ \mathrm{M}_{\mathrm{r}}=0.008 / 40=\mathbf{2} \mathbf{x}$ 10^{-4}
d) 1.25 g of calcium carbonate, CaCO_{3}

Answer

$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{CaCO}_{3}\right]=100 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 1.25 g of calcium carbonate $=$ mass $/ \mathrm{M}_{\mathrm{r}}=1.25 / 100=$

0.0125

e) 3.5 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]=78 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of benzene in $3.5 \mathrm{~g}=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=3.5 / 78=\mathbf{0 . 0 4 5}$
f) 12 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]=180 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 12 g of glucose $=$ mass $/ \mathrm{M}_{\mathrm{r}}=12 / 180=\mathbf{0 . 0 6 7}$
g) 1 g of uranium dioxide, UO_{2}

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{UO}_{2}\right]=270 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 1 g of uranium dioxide $=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=1 / 270=\mathbf{3 . 7} \mathbf{x} \mathbf{1 0}^{-3}$
h) 0.3 g aluminium sulphate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3]}=342 \mathrm{~g} \mathrm{~mol}^{-1}\right.$
Number of moles in 0.3 g aluminium sulphate $=$ mass $/ \mathrm{M}_{\mathrm{r}}=0.3 / 342=\mathbf{8 . 7 7} \times \mathbf{1 0}^{-}$ 4
i) 1.2 g iron (III) oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Answer

$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]=160 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 1.2 g iron (III) oxide $=$ mass $/ \mathrm{M}_{\mathrm{r}}=1.2 / 160=\mathbf{7 . 5} \mathbf{\times 1 0 ^ { - 3 }}$
j) 3.4 g sulphur trioxide, SO_{3}

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{SO}_{3}\right]=80 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 3.4 g sulphur trioxide, $\mathrm{SO}_{3}=$ mass $/ \mathrm{M}_{\mathrm{r}}=3.4 / 80=0.0425$

Exercise 3 How many formula units are present in the following?

Number of formula units $=$ Number of moles $\times 6.02 \times 10^{23}$

a) 0.25 moles of Cl_{2}

Answer
Number of molecules of Cl_{2} in 0.25 moles $=0.25 \times 6.02 \times 10^{23}=\mathbf{1 . 5 1} \times \mathbf{1 0}^{\mathbf{2 3}}$
b) 5 moles of CO_{2}

Answer
Number of molecules of CO_{2} in 5 moles $=5 \times 6.02 \times 10^{23}=\mathbf{3 . 0 1} \times \mathbf{1 0}^{\mathbf{2 4}}$
c) 10 gofCaCO 3

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{CaCO}_{3}\right]=100$
Number of moles in 10 g of $\mathrm{CaCO}_{3}=$ mass $/ \mathrm{Mr}=10 / 100=0.1$
Number of formula units in 10 g of $\mathrm{CaCO}_{3}=0.1 \times 6.02 \times 10^{23}=\mathbf{6 . 0 2} \times 1 \mathbf{1 0}^{\mathbf{2 2}}$
d) 2.45×10^{-3} moles of NH_{3}

Answer

Number of formula units (molecules) of NH_{3} in $2.45 \times 10^{-3} \mathrm{moles}=2.45 \times 10^{-3} \mathrm{x}$ $6.02 \times 10^{23}=1.48 \times \mathbf{1 0}^{\mathbf{2 1}}$
e) 0.34 kg of $\mathrm{Fe}_{3} \mathrm{O}_{4}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{Fe}_{3} \mathrm{O}_{4}\right]=232$
Number of moles of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in $340 \mathrm{~g}(0.34 \mathrm{~kg})=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=340 / 232=1.47$

f) 2.56 moles of $\mathrm{C}_{6} \mathrm{H}_{6}$

Answer
Number of particles (molecules) in 2.56 moles of $\mathrm{C}_{6} \mathrm{H}_{6}=2.56 \times 6.02 \times 10^{23}=$ 1.54×10^{24}
g) $1 \times 10^{-6} g$ of $A u$

Answer
Number of moles of Au in $1 \times 10^{-6} \mathrm{~g}=1 \times 10^{-6} / 197=5.08 \times 10^{-9}$
Number of atoms of Au in $1 \times 10^{-6} \mathrm{~g}=5.08 \times 10^{-9} \times 6.02 \times 10^{23}=\mathbf{3 . 0 6} \mathbf{~} \mathbf{1 0} \mathbf{1 0}^{\mathbf{1 5}}$
h) $0.12{\text { moles of } \mathrm{CuSO}_{4}}^{2}$

Answer
Number of formula units of CuSO_{4} in 0.12 moles $=0.12 \times 6.02 \times 10^{23}=\mathbf{7 . 2 2} \mathbf{x}$ 10^{22}
i) 1 tonne of N_{2}

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{N}_{2}\right]=28$
Number of moles of N_{2} in $1000 \mathrm{~g}(1$ tonne $)=1000 / 28=35.7$
Number of formula units in 1 tonne $N_{2}=35.7 \times 6.02 \times 10^{23}=\mathbf{2 . 1 5} \mathbf{~} \mathbf{1 0}^{\mathbf{2 5}}$
j) 4.45×10^{-6} moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Answer
Number of formula units in 4.45×10^{-6} moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=4.45 \times 10^{-6} \times 6.02 \times$ $10^{23}=\mathbf{2 . 6 8} \times 10^{18}$

Exercise 4: Determine the mass of the following:

$$
\text { Mass }=\text { Number of Moles } \times M_{r}
$$

a) 2 moles of carbon dioxide, CO_{2}

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{CO}_{2}\right]=44 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 2 moles of carbon dioxide $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=2 \times 44=\mathbf{8 8} \mathbf{g}$
b) 0.01 moles of nitrogen dioxide, NO_{2}

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{NO}_{2}\right]=48 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 0.01 moles of nitrogen dioxide $=$ number of moles $\times M_{r}=0.01 \times 46=$
0.46 g
c) 1×10^{-5} moles of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{C}_{6} \mathrm{H}_{6}=78 \mathrm{~g} \mathrm{~mol}^{-1}\right.$
Mass of 1×10^{-5} moles of benzene $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=1 \times 10^{-5} \times 78=7.8$ $\times 10^{-4}$ g
d) 2.03×10^{-3} moles of uranium dioxide, UO_{2}

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{UO}_{2}\right]=270 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 2.03×10^{-3} moles of uranium dioxide $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=2.03 \mathrm{x}$ $10^{-3} \times 270=\mathbf{0 . 5 5} \mathbf{g}$
e) 1.12 moles of sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=98 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 1.12 moles of sulfuric acid $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=1.12 \times 98=$ 109.76 g
f) 3×10^{-4} moles of calcium carbonate, CaCO_{3}

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{CaCO}_{3}\right]=100 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 3×10^{-4} moles of calcium carbonate $=$ number of moles $\times M_{r}=3 \times 10^{-4}$ $\times 100=\mathbf{0 . 0 3} \mathbf{g}$
g) 1.2 moles of ethane, $\mathrm{C}_{2} \mathrm{H}_{4}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]=28 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 1.2 moles of ethane $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=1.2 \times 28=\mathbf{3 3 . 6} \mathbf{g}$
h) 0.5 moles ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=60 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 0.5 moles ethanoic acid $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=0.5 \times 60=\mathbf{3 0} \mathbf{g}$
i) 1.25×10^{-3} moles sodium hydroxide, NaOH

Answer
$\mathrm{Mr}_{\mathrm{r}}[\mathrm{NaOH}]=40 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 1.25×10^{-3} moles of sodium hydroxide $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=1.25$ $\times 10^{-3} \times 40=\mathbf{0 . 0 5} \mathbf{g}$
j) 0.025 moles potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right]=294 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 0.025 moles of potassium dichromate $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=0.025$ x $294=7.35 \mathrm{~g}$

