

Determining Empirical \& Molecular Formula

Nigel Freestone
www.chemtextbook.com

Calculating Empirical \& Molecular Formula

Chemical formula spells out the composition of chemical compounds and even the way in which the atoms are arranged using a single line of chemical element symbols, numbers, and other symbols, such as dashes, commas, brackets, and plus (+) and minus $(-)$ signs. There are several types of chemical formula. These include empirical formula, molecular (or true) formulas, and structural formulas.

Molecular formulas have relative formula masses that are whole-number multiples (n) of the corresponding empirical relative formula mass. Chemical compounds with the empirical formula $\mathrm{CH}_{2} \mathrm{O}$ (relative formula mass $=30$) will have a relative formula mass which is a multiple of 30 , ie $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{RFM}=60), \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{RFM}=90), \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{10}(\mathrm{RFM}=300)$.

Empirical Formula from Molecular Formula, $X_{a} Y_{b} Z_{c}$

Step 1: Write down the subscripts, ie a, b, c;
Step 2: Identify the largest number that divides into a, b and c ;
Step 3: Divide all subscripts by the number identified in step 2;

Step 4: Write down the empirical formula.
Example: What is the empirical formula of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

Step 1	Write down chemical formula subscripts	$6,12,6$
Step 2 Step 3	Identify the largest common factor Divide subscripts by the largest common factor	6
Step 4	Write down the empirical formula	$\mathrm{C}_{6 / 6} \mathrm{H}_{12 / 6} \mathrm{NO}_{6 / 6}$

Example: What is the empirical formula of $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$?

Step 1	Write down chemical formula subscripts	$8,10,4,2$
Step 2 Step 3	Identify the largest common factor Divide subscripts by the largest common factor	2
Step 4	Write down the empirical formula	$\mathrm{C}_{8 / 2} \mathrm{H}_{10 / 2} \mathrm{~N}_{4 / 2} \mathrm{O}_{2 / 2}$

Empirical Formula from \% Composition

To calculate empirical formula from percentage compositions of a compound use the calculating frame given below:

Step 1: Write the names or symbols of the elements;
Step 2: For each elementgive its \% composition;
Step 3: Using the Periodic Table find the A_{r} value for each element;
Step 4: Divide the \% value for each element by its A_{r};

Step 5: Divide throughout by the smallest value;
Step 6: Write down the empirical formula.
The action at Step 5 usually gives you the simplest whole number ratio straightaway. Sometimes it does not, so you might get 1 and 1.5. In this example, you would multiply both numbers by 2 , giving 2 and 3 (instead of rounding 1.5 up to 2).

Step 1		Element X	Element Y	Element Z
Step 2	\% composition	X	y	z
Step 3	Relative atomic mass, A_{r}	$\mathrm{A}_{[}[\mathrm{X}]$	$\mathrm{A}_{[}[\mathrm{Y}]$	$\mathrm{A}_{[}[\mathrm{Z}]$
Step 4	\% composition/Ar $\times 100$	x/Ar $[\mathrm{X}] \times 100$	$\mathrm{y} / \mathrm{A}_{\mathrm{r}}[\mathrm{Y}] \times 100$	z/Ar[Z] x 100
Step 5	Divide by smallest number from Step 4	Step 4 answer/ Smallest no. Step 4 = a	Step 4 answer/ Smallest no. Step 4 = b	Step 4 answer/ Smallest no. Step 4 = c
Step 6	Empirical Formula	$\mathrm{Xa}_{\mathrm{a}} \mathrm{YbZ}_{c}$		

Example: What is the empirical formula of the nitrogen oxide that has 30.4% by mass nitrogen and 69.6% by mass oxygen?

Answer:

Step 1		N	0
Step 2	\% composition	30.4	69.6
Step 3	A_{r}	14	16
Step 4	\% composition/Ar	30.4/14 = 2.17	69.6/16 = 4.35
Step 5	Divide by small number from step 4	$2.17 / 2.17=1$	4.35/2.17 = 2
Step 6	Empirical Formula:	$\mathrm{N}_{2} \mathrm{O}$	

Empirical Formula: $\mathrm{N}_{2} \mathrm{O}$

Example: What is the empirical formula of a compound was found to contain 32.65\% sulfur, 65.3\% oxygen and 2.04\% hydrogen?

Answer:

Step 3	A_{r}	32	16	1
Step 4	\% composition/A	$32.65 / 32=1.02$	$65.3 / 16=4.08$	$2.01 / 1=2.01$
Step 5	Divide by small number from step 4	$1.02 / 1.02=1$	$4.08 / 1.02=4$	$2.01 / 1.02=2$
Step 6	Empirical Formula	$\mathrm{SO}_{4} \mathrm{H}_{2}$		

Empirical formula: $\mathrm{H}_{2} \mathrm{SO}_{4}$

Empirical Formula from Elemental Masses (XYZ)

If you are given the elemental composition of an unknown substance in grams, you will need to proceed according to the following instructions.

Example: Find the empirical formula of an unknown substance made from p grams of element X, q grams of element Y and r grams of element Z.

Step 1: Write the names or symbols of the elements;
Step 2: Determine total mass of unknown substance, i.e. $p+q+r$ grams
Step 3: For each element calculate its \% composition, i.e. $p /(p+q+r) \times 100$
Step 4: Using the Periodic Table find the A_{r} value for each element;
Step 5: Divide the \% value for each element calculated in Step 3 by its A_{r};

Step 6: Divide throughout by the smallest value calculated in Step 5;
Step 7: Write down the empirical formula.

Step 1		X	Y	Z	Total
Step 2	Mass	n	p	q	$x+y+z$
Step 3	\% Composition	$\mathrm{p} /(\mathrm{p}+\mathrm{q}+\mathrm{r}) \times 100$	$\mathrm{q} /(\mathrm{p}+\mathrm{q}+\mathrm{r}) \times 100$	$r /(p+q+r) \times 100$	
Step 4	Ar	$\left.\mathrm{Ar}_{\mathrm{r}} \mathrm{X}\right]$	$\left.\mathrm{Ar}_{\mathrm{r}} \mathrm{Y}\right]$	$\mathrm{A}_{\mathrm{r}}[\mathrm{Z}]$	
Step 5	Divide step 2 value for each element by its A_{r}	Step 2 value/ $\mathrm{Ar}_{\mathrm{r}}[\mathrm{X}]$	Step 2 value/ $\mathrm{Ar}_{\mathrm{r}}[\mathrm{Y}]$	Step 2 value/ $\mathrm{Ar}_{\text {r }}[\mathrm{Z}]$	
Step 6	Divide Step 4 answer by the lowest step 4 value	Step 4 value/Lowest Step 4 value = a	Step 4 value/Lowest Step 4 value = b	Step 4 value/Lowest Step 4 value = c	
Step 7	Empirical Formula	$\mathrm{Xa}_{\mathrm{a}} \mathrm{Y}_{\mathrm{b}} \mathrm{Z}_{\mathrm{c}}$			

Answer:

A compound of was found to contain 4 g of mercury and 0.64 g of sulfur. What is

Step 1		Hg	S	Total
Step 2	Mass	4	0.64	4.64
Step 3	$\%$ composition	$4 / 4.64 \times 100=86.2$	$0.64 / 4.64 \times 100=13.8$	

Step 4
Step 5
Step 6
Step 7

A_{r}	200.6	32	
$\%$ composition $/ \mathrm{A}_{r}$	$86.2 / 200.6 \times 100=0.43$	$13.8 / 32 \times 100=0.43$	
Ratio	$0.43 / 0.43=1$	$0.43 / 0.43=1$	
Empirical Formula	$\mathbf{H g S}$		

Molecular Formula from Empirical Formula

Step 1: Calculate the relative empirical formula mass.

Step 2: Divide the relative molecular formula mass by relative empirical formula mass. You should get a whole number (n).

Step 3: Multiply each of the subscripts within the empirical formula by the number calculated (n) in Step 2 to obtain the molecular formula.

Example: Naphthalene is a carbon and hydrogen containing compound often used in moth balls. The empirical formula is $\mathrm{C}_{5} \mathrm{H}_{4}$ and its molar mass is $128.16 \mathrm{~g} / \mathrm{mol}$. Find its molecular formula.

Step 1: Empirical Formula Mass $=(12 \times 5)+(1 \times 4)=74$

Step 2: $n=$ Molecular Formula Mass/Empirical Formula Mass $=128 / 74=2$

Step 3: Molecular Formula $=2 \times$ empirical formula $=\mathrm{C}_{(5 \times 2)} \mathrm{H}_{(4 \times 2)}$

$$
=\mathrm{C}_{10} \mathrm{H}_{8}
$$

Example: A compound containing 40.0\% carbon, 5.7\% hydrogen and 53.3\% oxygen has an atomic mass of $175 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?

Step 1		C	H	O
Step 2	\% composition	40	5.7	53.3
Step 3	A_{r}	12	1	16
Step 4	\% composition/ A_{r}	$40 / 12$	$5.7 / 1$	$53.3 / 16$
Step 5	Ratio	3.33	5.7	3.33
		1	1.67	1
Step 6	Empirical Formula			

? Practice Problems

1. What is the empirical formula of the following compounds?
a. $\mathrm{C}_{6} \mathrm{H}_{6}$
b. $\mathrm{C}_{8} \mathrm{H}_{18}$
c. CO_{2}
d. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$
e. $\mathrm{X}_{39} \mathrm{Y}_{13}$
2. A 15.0 g sample of a compound was found to contain 8.83 g sodium and 6.17 g sulfur. Calculate the empirical formula of this compound.
3. Analysis of a 10.150 g sample of a compound known to contain only phosphorus and oxygen indicates a phosphorus content of a 4.433g. What is the empirical formula of this compound.
4. A sample of an oxide of arsenic is found to contain 75.74% arsenic. What is its empirical formula?
5. What is the empirical formula for a compound containing 26.57% potassium, 35.36% chromium, and 38.07% oxygen?
6. What is the empirical and molecular formulas of Ibuprofen which has a mass composition of $75.69 \% \mathrm{C}, 8.80 \% \mathrm{H}$ and $15.51 \% \mathrm{O}$ and the molecular mass is approximately $206 \mathrm{~g} / \mathrm{mol} . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$.
7. Epsom salts, a strong laxative used in veterinary medicine, is a hydrate. The formula for Epsom salts can be written as $\mathrm{MgSO}_{4} \cdot \times \mathrm{H}_{2} \mathrm{O}$, where x indicates the moles of water for every mole of magnesium sulfate. When 5.061 g of this hydrate is heated to $250^{\circ} \mathrm{C}$, all the water of hydration is lost, leaving 2.472 g of MgSO_{4}. What is the value of x ?
8. When 2.5000 g of an oxide of mercury, (HgxOy) is decomposed into the elements by heating, 2.405 g of mercury are produced. Calculate the empirical formula.
9. The compound benzamide has the following percent composition. What is the empirical formula?
$\mathrm{C}=69.40$ \% $\mathrm{H}=5.825 \% \mathrm{O}=13.21 \% \mathrm{~N}=11.57 \%$
10. Nicotine, an alkaloid in the nightshade family of plants that is mainly responsible for the addictive nature of cigarettes, contains 74.02% C, $8.710 \% \mathrm{H}$, and 17.27% N . If 40.57 g of nicotine contains 0.2500 mole nicotine, what is the molecular formula?

Answers are given on the next page.

? Practice Problem Answers

1. What is the empirical formula of the following compounds?
a. $\mathrm{C}_{6} \mathrm{H}_{6}$

Step 1	Write down chemical formula subscripts	6,6
Step 2	Identify the largest common factor	6
Step	Divide subscripts by the largest common factor	$\mathrm{C}_{6 / 6} \mathrm{H}_{6 / 6}$
Step 4	Write down the empirical formula	Empirical Formula: $\mathbf{C H}$

b. $\mathrm{C}_{8} \mathrm{H}_{18}$

Step 1	Write down chemical formula subscripts	8,18
Step 2	Identify the largest common factor	2
Step 3	Divide subscripts by the largest common factor	$\mathrm{C}_{8 / 2} \mathrm{H}_{18 / 2}$
Step 4	Write down the empirical formula	Empirical Formula: $\mathbf{C}_{4} \mathbf{H}_{9}$

C. CO_{2}

Step 1	Write down chemical formula subscripts	1,2
Step 2	Identify the largest common factor	1
Step 3	Divide subscripts by the largest common factor	$\mathrm{C}_{1 / 1} \mathrm{O}_{2 / 1}$
Step 4	Write down the empirical formula	Empirical Formula: $\mathbf{C O}_{\mathbf{2}}$

d. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$

Step 1	Write down chemical formula subscripts	$2,6,2$
Step 2 Step 3	Identify the largest common factor Divide subscripts by the largest common factor	2
Step 4	Write down the empirical formula	Empirical Formula: $\mathbf{C H}_{3} \mathbf{O}$

e. $X_{39} Y_{13}$

Step 1	Write down chemical formula subscripts	13,29
Step 2	Identify the largest common factor	13
Step	Divide subscripts by the largest common factor	$X_{39 / 13} \mathrm{Y}_{13 / 13}$
Step 4	Write down the empirical formula	Empirical Formula: $\mathbf{X}_{\mathbf{3}} \mathbf{Y}$

2. A 15.0 g sample of a compound was found to contain 8.83 g sodium and 6.17 g sulfur. Calculate the empirical formula of this compound.

Answer

Step 1		Na	S	Total
Step 2	Mass	8.83	6.17	15.0
Step 3	$\%$ composition	$8.83 / 15 \times 100=58.9$	$6.17 / 15 \times 100=41.1$	
Step 4	A_{r}	23	32	
Step 5	$\%$ composition $/ \mathrm{A}_{r}$	$58.9 / 23$	$41.1 / 32$	

$\left.\begin{array}{|l|l|c|c|c|}\hline \text { Step 6 } & \text { Ratio } & 2.56 & 1.28 & 1\end{array}\right]$
3. Analysis of a 10.150 g sample of a compound known to contain only phosphorus and oxygen indicates a phosphorus content of a 4.433g. What is the empirical formula of this compound.

Step 1		P	0	Total
Step 2	Mass	4.433	$10.15-4.433=5.717$	10.15
Step 3	$\%$ composition	$4.433 / 10.15 \times 100=$	$5.717 / 10.15 \times 100=$	
		43.7	56.3	
Step 4	Ar_{r}	31	16	
Step 5	$\%$ composition $/ \mathrm{A}_{\mathrm{r}}$	$43.7 / 31=1.4$	$56.3 / 16=3.52$	
Step 6	Ratio	1	2.5	
		2	5	
Step 7	Empirical Formula	$\mathbf{P}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$		

4. A sample of an oxide of arsenic is found to contain 75.74% arsenic. What is its empirical formula?

Step 1		As	O
Step 2	\% composition	75.74	$100-75.74=24.26$
Step 3	A_{r}	75	16
Step 4	\% composition/Ar	$75.74 / 75=1$	$24.26 / 16 \times 100=1.5$
Step 5	Ratio	1	1.5
		2	3
Step 6	Empirical Formula	As2O3	

5. What is the empirical formula for a compound containing 26.57% potassium, 35.36% chromium, and 38.07% oxygen?

Step 1		K	Cr	O
Step 2	\% composition	26.57	35.36	38.07
Step 3	A_{r}	39	52	16
Step 4	\% composition/ A_{r}	$26.57 / 39=0.68$	$35.36 / 52=0.68$	$38.07 / 16=2.38$
Step 5	Ratio	1	1	4
Step 6	Empirical Formula	$\mathbf{K C r O}_{\mathbf{4}}$		

6. What is the empirical and molecular formulas of Ibuprofen which has a mass composition of $75.69 \% \mathrm{C}, 8.80 \% \mathrm{H}$ and $15.51 \% \mathrm{O}$ and the molecular mass is approximately $206 \mathrm{~g} / \mathrm{mol}$.

Step 1		C	H	O
Step 2	\% composition	75.69	8.8	15.51
Step 3	A_{r}	12	1	16
Step 4	\% composition $/ \mathrm{A}_{\mathrm{r}}$	6.3	8.8	0.97

Step 5	Ratio	6.5	9	1
		13	18	2
Step 6	Empirical	$\mathrm{C}_{13} \mathrm{H}_{18} \mathbf{O}_{\mathbf{2}}$		
	Formula			

$\operatorname{RFM}\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}\right]=206$
7. Epsom salts, a strong laxative used in veterinary medicine, is a hydrate. The formula for Epsom salts can be written as $\mathrm{MgSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$, where x indicates the moles of water for every mole of magnesium sulfate. When 5.061 g of this hydrate is heated to $250^{\circ} \mathrm{C}$, all the water of hydration is lost, leaving 2.472 g of MgSO_{4}. What is the value of x ?

Step $1 \times \mathrm{MgSO}_{4} \mathrm{XH}_{2} \mathrm{O}$		$\mathrm{MgSO}_{4}+\mathrm{xH}_{2} \mathrm{O}$		
		$\mathrm{MgSO} 4 \times \mathrm{H} 2 \mathrm{O}$	MgSO4	H2O
Step 2	Mass	5.061	2.472	5.061-2.472 $=2.589$
Step 3	\% composition	5.061	$\begin{gathered} 2.472 / 5.061 \times 100 \\ =48.84 \end{gathered}$	$\begin{gathered} 2.589 / 5.061 \times 100= \\ 51.15 \end{gathered}$
Step 4	M_{r}	$120+18 x$	120	18
Step 5	\% composition/M ${ }_{\text {r }}$		$48.84 / 120=0.41$	51.15/18 = 2.84
Step 6	Ratio		1	7
	Formula	$\mathrm{MgSO}_{4 .} \mathbf{7 \mathrm { H } _ { 2 } \mathrm { O }}$		

8. When 2.5000 g of an oxide of mercury, (HgxOy) is decomposed into the elements by heating, 2.405 g of mercury are produced. Calculate the empirical formula.

Step 1		Hg	O	
Step 2	Mass	2.405	$2.500=2.405=0.095$	2.500
Step 3	$\%$ composition	$2.405 / 2.5 \times 100=96.2$	$0.095 / 2.500 \times 100=3.8$	
Step 4	A_{r}	200.6	16	
Step 5	$\%$ composition $/ \mathrm{A}_{\mathrm{r}}$	$96.2 / 200.6=0.48$	$3.8 / 16=0.24$	
Step 6	Ratio	2	1	
Step 7	Empirical Formula	$\mathrm{Hg}_{2} \mathbf{O}$		

9. The compound benzamide has the following percent composition. What is the empirical formula?
$\mathrm{C}=69.40$ \% $\mathrm{H}=5.825$ \% $\mathrm{O}=13.21$ \% N=11.57 \%

Step 1		C	H		N
Step 2	\% composition	69.4	5.825	13.21	11.57
Step 3	A_{r}	12	1	16	14
Step 4					
Step 5	\% composition/A ${ }_{\text {r }}$	69.4/12 =	5.825/1 = 5.825	13.21/16 =	11.57/14 =
Step 6	Ratio	5.78	5.825	0.825	0.826
		7	7	1	1
Step 7	Empirical Formula	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}$			

10. Nicotine, an alkaloid in the nightshade family of plants that is mainly responsible for the addictive nature of cigarettes, contains $74.02 \% \mathrm{C}, 8.710 \% \mathrm{H}$, and $17.27 \% \mathrm{~N}$. If 40.57 g of nicotine contains 0.2500 mole nicotine, what is its molecular formula?

Step 1	C		H	N
Step 2	$\%$ composition	$74.02=$	8.71	17.27
Step 3	Ar_{r}	12	1	14
Step 4	$\%$ composition/A	$74.02 / 12=6.17$	$8.71 / 1=8.71$	$17.27 / 14=1.23$
Step 5	Ratio	5	7	1
Step 6	Empirical Formula	$\mathbf{C}_{\mathbf{5}} \mathbf{H}_{\mathbf{7}} \mathbf{N}$		
	Molecular Formula	$\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{1 4}} \mathbf{N}_{\mathbf{2}}$		

Empirical Formula $\operatorname{RFM}\left[\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}\right]=81$
Molecular Mass $=$ mass $/$ no. of moles $=40.57 / 0.25=162$
Molecular Formula $=\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$

