THE MOLE

VISUAL CHEM CARDS

The Mole

The Mole

6.02×10^{23}

602,214,090,000,000,000,000,000

1 mole $=6.02 \times 10^{23}$

1 mole of an element = Relative Atomic Mass $\left(A_{r}\right)$ in g

1 mole of a compound = Relative Formula Mass (M_{r}) in g

1 mole of a gas occupies a volume of $22,400 \mathrm{~cm}^{3}$ at STP

Essential Mole Equations

$$
\begin{aligned}
& n=\frac{m}{M_{r}} \\
& \mathrm{n}=\text { number of moles (mol.) } \\
& \mathrm{N}=\text { number of particles i.e. } \\
& \text { atoms/molecules/ions etc. } \\
& N=n x N_{A} \\
& m=n x M_{r} \\
& \mathrm{~m}=\operatorname{mass}(\mathrm{g}) \\
& \mathrm{M}_{\mathrm{r}}=\text { molarmass }(\mathrm{g} / \mathrm{mol}) \\
& N_{A}=6.02 \times 10^{23} \\
& \mathrm{v}=\text { volume }\left(\mathrm{cm}^{3}\right) \\
& \mathrm{V}_{\mathrm{m}}=\text { molar volume } \\
& M_{r}=m x \frac{V_{m}}{v}
\end{aligned}
$$

Mole Calculating Framework

Mole Calculating Framework - use to solve all mole-based problems

$$
c A X_{3}+d Z_{2} \longrightarrow e A Z+f Z X_{2}
$$

Balanced Equation	CAX_{3}	+	$\mathrm{d} Z_{2}$	eAZ	+	$f Z X_{2}$
A_{r} or Mr	$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{AX}_{3}\right]$		$M_{r}\left[Z_{2}\right]$	$\mathrm{Mr}_{\mathrm{r}}[$ AZ $]$		$\mathrm{Mr}_{\mathrm{r}}\left[Z \mathrm{X}_{2}\right]$
Reaction Coefficients	C		d	e		f
Mass Balance*	c $\times \mathrm{Mr}_{r}\left[\mathrm{AX}_{3}\right]$		$\mathrm{d} \times \mathrm{Mr}_{\mathrm{r}}\left[\mathrm{Z}_{2}\right]$	e $\times \mathrm{M}_{[}[$[AZ]		$\mathrm{f} \times \mathrm{M}_{\mathrm{r}}\left[\mathrm{ZX}_{2}\right]$
No. of Moles	$\begin{gathered} =\text { Mass of } \\ \mathrm{AX}_{3} / \mathrm{M}_{\mathrm{r}}\left[\mathrm{AX}_{3}\right] \end{gathered}$		$\begin{aligned} & =\text { Mass of } \\ & Z_{2} / M_{r}\left[Z_{2}\right] \end{aligned}$	$\begin{aligned} & =\text { Mass of } \\ & \text { AZ/Mr}[A Z] \end{aligned}$		$\begin{gathered} =\text { Mass of } \\ \mathrm{ZX}_{2} / \mathrm{M}_{\mathrm{r}}\left[\mathrm{ZX}_{2}\right] \end{gathered}$
No. of Moles (gases only)	$=\operatorname{Vol} .\left(\mathrm{AX}_{3}\right) / \mathrm{V}_{\mathrm{m}}$		$=\mathrm{Vol} .\left(\mathrm{Z}_{2}\right) / \mathrm{V}_{\mathrm{m}}$	$=\mathrm{Vol} .(\mathrm{AZ}) / \mathrm{V}_{\mathrm{m}}$		$=\mathrm{Vol} .\left(\mathrm{ZX}_{2}\right) / \mathrm{V}_{\mathrm{m}}$
Mass (g)	$=$ No. of moles $\mathrm{AX}_{3} \times \mathrm{M}_{\mathrm{r}}\left[\mathrm{AX}_{3}\right]$		$\begin{gathered} =\text { No. of moles } \\ Z_{2} \times M_{r}\left[Z_{2}\right] \end{gathered}$	= No. of moles $A Z \times M_{r}[A Z]$		$=$ No. of moles $\mathrm{ZX}_{2} \times \mathrm{M}_{\mathrm{r}}\left[\mathrm{ZX}_{2}\right]$
Volume (cm^{3}) (solutions only)	$=$ No. of moles $\mathrm{AX}_{3} \times \mathrm{V}_{\mathrm{m}}$		$\begin{gathered} =\text { No. of moles } \\ Z_{2} \times V_{m} \end{gathered}$	$=$ No. of moles $A Z \times V_{m}$		$\begin{gathered} =\text { No. of moles } \\ \\ Z X_{2} \times V_{m} \end{gathered}$

Mass Balance: $\left(c \times M_{r}\left[A X_{3}\right]\right)+\left(d \times M_{r}\left[Z_{2}\right]\right)=\left(e \times M_{r}[A Z]\right)+\left(f \times M_{r}\left[Z_{2}\right]\right)$

> All the items in red are known or can be readily obtained from the balanced equation and relative atomic masses. In calculations additional information will be provided from which all the remaining values can be determined, using the equations provided in the boxes.

Concentration

Solution: A homogeneous mixture of substances.

Solvent: The substance in a solution present in the greatest amount.

Solute: the substance in a solution present in the least amount.

Solubility: the property of a solid, liquid or gaseous chemical substance called solute to dissolve in a solid, liquid or gaseous solvent.

Concentration refers to the amount of a substance per defined space.

Another definition is that concentration is the ratio of solute in a solution to either solvent or total solution.

Concentration can be expressed in several ways:

Type of solution (solute-solvent)	Units	Equation
solid-liquid	Molarity(M or mol/L or moldm ${ }^{\text {-3 }}$)	Number of moles of solute per litre of solvent*
solid-liquid	Mass per volume (g/L org dm^{-3})	Number of g per litre of solvent
solid-solid	Percent by Mass (\% m/m) **	Mass of solute/ Mass of solution $\times 100$
liquid-liquid	Percent by volume (\% v/v)	Volume of solute / Volume of Solution $\times 100$
solid-liquid	Percent by mass/volume (\% m/v)	Mass of Solute/Volume of Solution $\times 100$
All solutions	Parts per million (ppm; mg/L; $\mathrm{mg} / \mathrm{kg}$)	Mass of solute/ Mass of Solution $\times 10^{6}$

Molarity

Molarity (M) is the concentration of a solution expressed as the number of moles of solute present in a litre of solution.

A 1M solution contains a molar mass (M_{r}) of solute in 1 litre (L) of solvent.

The following units of concentration are all the same:

$$
\mathrm{M}=\mathrm{mol} \mathrm{~L}^{-1}=\mathrm{mol} / \mathrm{L}=\mathrm{mol} \mathrm{dm}^{-3}=\mathrm{mol} / \mathrm{dm}^{3}
$$

Useful Equations

$c=\underline{n}$
 $\mathrm{c}=$ concentration ($\left.\mathrm{mol} \mathrm{dm}^{-3}, \mathrm{~mol} / \mathrm{l}\right)$

v
$\mathrm{n}=$ number of moles (mol.)
$v=$ volume $\left(\mathrm{dm}^{3}\right.$ or litre $)$
$\boldsymbol{n}=\boldsymbol{c} \boldsymbol{x} \boldsymbol{v}$
Note: $\mathrm{dm}^{3}=$ litre $=1000 \mathrm{~cm}^{3}$

$$
v=\frac{n}{c}
$$

Molarity

Concentration can also be expressed as stated above in terms of mass (g) per unit of volume (L), i.e. $\mathrm{gL}^{-1}(\mathrm{~g} / \mathrm{L})$ or $\mathrm{g} \mathrm{dm}^{-3}\left(\mathrm{~g} / \mathrm{dm}^{3}\right)$.

Units:

V = Volume (L)

If the amount of solute is measured in moles, then concentration unit is M

If amount of solute is measured in g then concentration unit is $\mathrm{g} / \mathrm{L}\left(\mathrm{g} \mathrm{L}^{-1}\right)$ or $\mathrm{g} \mathrm{dm}^{-3}$

For example: glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ has a molar mass (Mr) of $180 \mathrm{~g} \mathrm{~mol}^{-1}$. A solution of 180 g of glucose dissolved in a total volume of 1 litre therefore, has a concentration of 1.0 M or $180 \mathrm{~g} / \mathrm{L}$. A 0.1 M solution of glucose therefore contains $18.0 \mathrm{~g}(0.1 \times \mathrm{Mr})$ of dissolved glucose in 1 L of solution. Similarly, 1.8 g of glucose in $100 \mathrm{~cm}^{3}$ is equivalent to 18 g in $1000 \mathrm{~cm}^{3}$ $(1 \mathrm{~L})$, giving a concentration of 0.1 M or $18 \mathrm{~g} / \mathrm{L}$.

To convert from M to g / L multiply by M_{r}

To convert g / L to M divide by M_{r}

Volumetric Analysis Calculating Framework

Volumetric (Titrimetric) Analysis Calculating Framework

\qquad .to solve all volumetric analysis problems.

Balanced Equation	uA	$\pm \quad$ WB	yC	+	zD
Reaction Coefficients	u	W	y		Z
Concentration (M)	Concentration of A $\left(c_{A}\right)$	Concentration of B $\left(C_{B}\right)$			
Volume (cm ${ }^{3}$)	Volume of $A\left(\mathrm{~V}_{\mathrm{A}}\right)$	Volume of $B\left(V_{B}\right)$			
No. of Moles (n)	$\mathrm{n}_{\mathrm{A}}=\mathrm{V}_{\mathrm{A}} \times \mathrm{c}_{\mathrm{A}}$	$\mathrm{n}_{\mathrm{B}}=\mathrm{V}_{\mathrm{B}} \times \mathrm{C}_{\mathrm{B}}$			

At the end point:

$$
\begin{array}{ll}
\text { number of moles of } B\left(n_{B}\right) & =V_{B} \times C_{B} \\
\text { number of moles of } A\left(n_{A}\right) & =(u / w) \times n_{B} \\
& =(u / w) \times V_{B} \times C_{B} \\
\text { concentration of } A & =n_{A} / V_{B} \\
\text { (analyte) } & =(u / w) \times V_{B} / V_{A} \times C_{B}
\end{array}
$$

Concentration (M) of $A=(u / w) \times V_{B} / V_{A} \times C_{B}$

