Acids, Bases \& Buffers Test: Answers

1. (a) Any two from:

Weigh by difference or rinse weighing bottle and add to beaker
Rinse beaker and add washings to graduated flask
Invert flask several times to ensure uniform solution
Use a funnel to transfer to the flask and rinse the funnel
Use a stirrer to prepare the solution and rinse the stirrer
If more than two answers apply the list rule.
Max 2
(b) $K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HA}]$

Allow any correct expression relating $K_{q}\left[H^{+}\right]$and [HA]
$[\mathrm{HA}]=\left(10^{-250}\right)^{2} / 1.07 \times 10^{-3}$
M2 also scores M1
$=9.35 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
Do not allow 9.4 (answer is 9.346).
Correct answer onlyscores 1 mark.
Do not penalise precision but must be to at least two significant figures.
(c) \quad (b) $\times 138.0 / 4$
$=0.322$
Using 8.50×10^{-3} gives 0.293
Correct answer scores M1 and M2.
Do not penalise precision but must be to at least two significant figures.
(d) \quad (c) $\times 100 / 0.500=64.5 \%$

Using 0.293 from (c) gives 58.7\%
Using 0.347 gives 69.4\%
Do not penalise precision.
2. (a) (i) $-\log \left[\mathrm{H}^{+}\right]$
(ii) $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
(b) (i) $\left[\mathrm{H}^{+}\right]=2.34 \times 10^{-7}$
$\mathrm{pH}=6.63$
Penalise fewer than 3 sig figs but allow more than $2 d p$
(ii) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
(iii) $\quad \mathbf{M 1} \quad\left[\mathrm{H}^{+}\right]=\mathrm{K}_{w} /\left[\mathrm{OH}^{-}\right]$
if upside down or CE, allow M3 only for correct use of their [H^{+}]

M3 $\mathrm{pH}=12.4(1)$
not 12.40 (AE from 12.407)
Penalise fewer than 3 sig figs but allow more than 3 sfs For values above 10, allow 3sfs - do not insist on 2 dp .
For values below 1, allow 2dp - do not insist on 3 sig figs
Not allow $\mathrm{pH}=14-\mathrm{pOH}$ but can award $\mathrm{M3}$ only for $\mathrm{pH}=$ 13.1(46)

Can award all three marks if $p K_{w}=13.26$ is used
(c) M1 $\mathrm{mol} \mathrm{NaOH}=\mathrm{mol} \mathrm{OH}^{-}=\left(30 \times 10^{-3}\right) \times 0.20=6.0 \times 10^{-3}$ mark for answer

M2 $\mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}=\left(25 \times 10^{-3}\right) \times 0.15=3.75 \times 10^{-3}$ mark for answer

M3 $\mathrm{mol} \mathrm{H}^{+}=\left(25 \times 10^{-3}\right) \times 0.15 \times 2=7.5 \times 10^{-3}$ $\mathrm{ORXS} \mathrm{mol} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}=0.75 \times 10^{-3}$
if factor of 2 missed or used wrongly, CE - lose M3 and next mark gained. In this case they must then use K_{w} to score any more.
see examples below

M4 XS mol H$=1.5 \times 10^{-3}$

M5 $\quad\left[\mathrm{H}^{+}\right]=\left(1.5 \times 10^{-3}\right) \times(1000 / 55)=0.0273$
if no use or wrong use of volume, lose M5 and M6 except if 1000 missed
AE-1 ($\mathrm{pH}=4.56$)

M6 $\mathrm{pH}=1.56$
Penalise fewer than 3 sig figs but allow more than 3 sfs
For values above 10, allow 3sfs - do not insist on 2 dp .
For values below 1, allow 2dp - do not insist on 3 sig figs
3. (a) Proton donor or H^{+}donor

Allow donator
(b) (i) $B B$

Both need to be correct to score the mark
(ii) AA

Both need to be correct to score the mark
(iii) BA

Both need to be correct to score the mark
(c) M1 $\left[\mathrm{H}^{+}\right]=10^{-1.25}$ OR 0.05623

M2 $\mathrm{mol} \mathrm{HCl}=\left(25 \times 10^{-3}\right) \times 0.0850\left(=2.125 \times 10^{-3}\right)$
Mark for Working

M3 vol $\left(=\frac{2.125 \times 10^{-3}}{0.05623}\right)=0.0378 \mathrm{dm}^{3}$ or $37.8 \mathrm{~cm}^{3}$
allow 0.0375-0.038 dm^{3} or $37.5-38 \mathrm{~cm}^{3}$
Units and answer tied
Lose M3 if total given as $(25+37.8)=62.8 \mathrm{~cm}^{3}$
Ignore "vol added $=12.8 \mathrm{~cm}^{3}$ " after correct answer
(d) (i) 4.52

Must be $2 d p$
 Must have all brackets but allow () Allow HA etc NO mark for 10-pka
(iii) M1 $\quad \mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{HX}]}{}$ or with numbers

Allow $\left[H^{+}\right]=\sqrt{ }(K a \times[H A])$ for M1

M2 $\quad\left[H^{+}\right]=\left(\sqrt{ }\left(3.01 \times 10^{-5} \times 0.174\right)=\sqrt{ }\left(5.24 \times 10^{-6}\right)\right)$
$=2.29 \times 10^{-3}-2.3 \times 10^{-3}$
Mark for answer

M3 $\mathrm{pH}=2.64 \quad$ (allow more than 2dp but not fewer)

Allow 1 for correct pH from their wrong [$\mathrm{H}+$]

If square root forgotten, $\mathrm{pH}=5.28$ scores 2 for M1 and M3
(e) $\quad \mathbf{M 1} \quad \mathrm{mol} \mathrm{OH}^{-}=\left(10.0 \times 10^{-3}\right) \times 0.125=1.25 \times 10^{-3}$ Mark for answer

M2 orig mol HX $=\left(15.0 \times 10^{-3}\right) \times 0.174=2.61 \times 10^{\times 3}$
Mark for answer

M3 mol HX in buffer = orig mol HX $-\mathrm{mol} \mathrm{OH}^{-}$ Mark for answer $=2.61 \times 10^{-3}-1.25 \times 10^{-3}=1.36 \times 10^{-3}$

Allow conseq on their (M2 - M1)
$\left([H X]=1.36 \times 10^{-3} / 25 \times 10^{-3}=0.0544\right)$
If no subtraction, max 3 for M1, M2 \& M4 ($\mathrm{pH}=4.20$)
If $[H \cdot]=[X]$ \& Vused, $\max 3$ for $M 1, M 2 \& M 3(p H=2.89)$

M4 mol X-in buffer $=\mathrm{mol} \mathrm{OH}^{-}=1.25 \times 10^{-3}$

$$
\left([\mathrm{X}-]=1.25 \times 10^{-3 / 25} \times 10^{-3}=0.05\right)
$$

May be scored in M5 expression

M5 [H^{+}
$\left(=\frac{K a \times[H X]}{\left[X^{-}\right]}\right)$
If use $K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$ no further marks

$$
=\frac{3.01 \times 10^{-5} \times 1.36 \times 10^{-3}}{1.25 \times 10^{-3}} \text { OR } \frac{3.01 \times 10^{-5} \times 0.0544}{0.05}
$$

$\left(=3.27 \times 10^{-5}\right)$
If either value of HX or X - used wrongly or expression upside down, no further marks

M6 $\mathrm{pH}=4.48$ or 4.49 (allow more than 2 dp but not fewer) Do not allow M6 for correct calculation of pH using their [H] - this only applies in (d)(iii) - apart from earlier AE
4. (a) before any KOH added: $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$ or $\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\therefore \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ (1)
$\therefore\left[\mathrm{H}^{+}\right]=\sqrt{1.74 \times 10^{-5} \times 0.160}=1.67 \times 10^{-3}(1)$
$\therefore \mathrm{pH}=2.78(1)$
(b) at $8 \mathrm{~cm}^{3} \mathrm{KOH}$:

Moles KOH added $=\left(8 \times 10^{-3}\right) \times 0.210=1.68 \times 10^{-3}(1)$
\therefore moles of $\mathrm{CH}_{3} \mathrm{COO}$ - formed $=1.68 \times 10^{-3}(\mathbf{1})$
Original moles of $\mathrm{CH}_{3} \mathrm{COOH}=\left(25 \times 10^{-3}\right) \times 0.160=4.0 \times 10^{-3}(1)$
\therefore moles of $\mathrm{CH}_{3} \mathrm{COOH}$ left $=\left(4.0 \times 10^{-3}\right)-\left(1.68 \times 10^{-3}\right)$
$=2.32 \times 10^{-3}(\mathbf{1})$
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$
$=1.74 \times 10^{-5} \times \frac{2.32 \times 10^{-3} / V}{1.68 \times 10^{-3} / V}=2.40 \times 10^{-5}(\mathbf{1})$
$\mathrm{pH}=4.62$ (1)
It forget subtraction : max 5
If K_{a} expression not used max 5
if moles of $\mathrm{CH}_{3} \mathrm{COOH}$ wrong but substitution used max 5
(c) at $40 \mathrm{~cm}^{3}$ of KOH :

Total moles of $\mathrm{KOH}=\left(40 \times 10^{-3}\right) \times 0.21=8.4 \times 10^{-3}(1)$
\therefore excess moles of $\mathrm{KOH}=\left(8.4 \times 10^{-3}\right)-\left(4.0 \times 10^{-3}\right)$

$$
=4.4 \times 10^{-3}(1)
$$

in total volume $=40+25=65 \mathrm{~cm}^{3}$ (1)
$\therefore[\mathrm{OH}]=4.4 \times 10^{-3} \times \frac{1000}{65}=0.0677$ (1)
$\therefore\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.0677}$
$O R p O H=1.17$
$=1.477 \times 10^{-13} \mathbf{(1)}$
$\therefore \mathrm{pH}=12.83(1)$

If volume missed : max 4 If moles of acid wrong but method includes subtraction : max 5
If no subtraction : max 4
5. (a) $\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\mathrm{CH}_{3} \mathrm{COO}^{-}}$or $=1.74 \times 10^{-5} \times \frac{0.186}{0.105}$

Allow ()

Alternative using Henderson-Hasselbach Equation

$$
\begin{gathered}
\left.\mathrm{pH}=\mathrm{pKa}-\log [\mathrm{HX}] / \mathrm{X}^{-}\right]=-\log \left(1.74 \times 10^{-5}\right)-\log \left(\frac{0.186}{(0.105}\right) \\
\text { Allow }()
\end{gathered}
$$

$$
\text { pKa }=4.76-0.248
$$

$$
\text { If }[H X] /[X] \text { or } \frac{0.186}{0.105} \text { upside down, can only score } 1
$$

$$
\mathrm{pH}==4.51
$$

$$
\text { so } \mathrm{pH}=5.01
$$

Must be to $2 d p$

$$
\begin{aligned}
& =3.08 \times 10^{-5} \\
& \text { If }[H X] \text { / [} X \text {] or } \frac{{ }^{\frac{0.186}{0.105}}}{} \text { upside down, or any addition or subtraction lose M1 \& } \\
& \text { м2. }
\end{aligned}
$$

(b) mol HX after addition $(=0.251+0.015)=0.266$

For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3

M1
mol X - after subtraction $(=0.140-0.015)=0.125$
For X if no subtraction or error in subtraction (other than AE) (or subsequent exta add or sub) MAX 3
$\left[\mathrm{H}^{+}\right]=\left(\frac{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\mathrm{CH}_{3} \mathrm{COO}^{-}}\right)=\frac{1.74 \times 10^{-5} \times 0.266}{0.125}$

If errors above in both addition AND subtraction can only score M3 for insertion of their numbers in rearranged expression. One exception, if addition and subtraction reversed then $\mathrm{pH}=4.58$ scores 2
$\left[\mathrm{H}^{+}\right]=3.703 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
If [HX] / [X-] upside down, lose M3 \& M4 (or next two marks) but can score M5 for correct pH conseq to their [H^{+}], so if M1 \& M2 correct, pH = 5.09 scores 3.
$\mathrm{pH}=4.43$
Correct use of HX and X^{-}values from (d) gives $\mathrm{pH}=4.41$ and scores 4

If wrong method, e.g. $\sqrt{ }$ or no use of rearranged K_{a} expression, may score M1 \& M2 but no more.
Allow more but not fewer than 2dp here.
Alternative using Henderson-Hasselbach Equation

$$
\text { mol acid after addition }=0.251+0.015=0.266
$$

For HX , if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3
mol salt after addition $=0.140-0.015=0.125$
For X - if no subtraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3
$\mathrm{pH}=\left(\mathrm{pKa}-\log [\mathrm{HX}] /\left[\mathrm{X}^{-}\right]\right)=-\log \left(1.74 \times 10^{-5}\right)-\log (0.266 / 0.125)$ If errors above in both addition AND subtraction can only score M3 for insertion of their numbers - except if addition and subtraction reversed then $\mathrm{pH}=4.58$ scores 2
$\mathrm{pH}=4.76-0.328$
$\mathrm{pH}==4.43$
If [HX] / [X]] upside down, lose M3 \& M4 (or next two marks) but can score M5 for correct pH conseq to their working, so if M1 \& M2 correct, $p H=5.09$ scores 3 .
Allow more but not fewer than $2 d p$ here.
6.
(a) (i) G
(ii) F
(iii) H
(b) (i) cresol purple
(ii) yellow to red
both colours needed and must be in this order
(iii) yellow or pale yellow

Not allow any other colour with yellow
7.
(a) $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}$

Accept multiples.
Accept $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
Ignore state symbols, even if incorrect.
(b) Test indicator/conc HCl

Do not accept 'smell'.
Do not accept precipitation reactions of aqueous ammonia.

Observation colour for an alkali / white fumes
If wrong test then lose second mark.
8. (Calibrate) meter with solution(s) of known $\mathrm{pH} / \mathrm{buffer}(\mathrm{s})$

Do not accept 'repeat reading'

Adjust meter/plot calibration curve
9. C
10. D
11. B
12. D
13. A

