TRANSITION METAL TEST Answers

1.	(a)	Parti	ally filled/incomplete d sub-shell/orbital/shell Ignore reference to f orbitals Do not allow d block Do not allow half-filled d orbitals	
	4.5		• •	1
	(b)	Has I	igand(s) Allow molecules/ions with lone pairs	
				1
		linked	by co-ordinate bonds Allow dative/donation of lone pair	
				1
	(c)	(Blue) light is absorbed (from incident white light)		
		Due to	electrons moving to higher levels/electrons excited	
			Allow $d \rightarrow d$ transitions	1
		-	ght (that) remains (is transmitted)/light that remains mitted light) is the colour observed	
			Allow red light reflected	1
	(d)	(i)	Circle round any O ⁻ <i>List principle</i>	
			2.50 6.1116.6.0	1
		C	ircle round either N	1
		(ii)	$EDTA^{4-} + [Co(H_2O)_6]^{2+} \rightarrow [CoEDTA]^{2-} + 6H_2O$	-
			Allow missing square brackets Ignore state symbols	
			ignore state symbols	1
		(iii)	Increase in entropy/ ΔS positive Or increase in disorder	
				1
			Secause 2 mol (of particles/molecules/species/entities mol	s) form
			Allow 'increase in number' as stated in words or	
			as shown by any numbers deduced correctly from an incorrect equation	
			Do not allow increase in ions/atoms	
				1

	(e)	(i) Co-	ordinate/dative/dative covalent bond Allow pair of electrons donated by nitrogen/ligand Do not allow pair of electrons donated from Iron/Fe		
		Cova	Jont band	1	
		COVA	alent bond Shared electron pair		
			Sharea electron pan	1	
		(ii) Trar	nsport of oxygen/O ₂		
		,	Allow any statement that implies oxygen carried (around the body)		
			Do not allow transport of carbon dioxide (CO_2).		
			This also contradicts the mark (list principle)		
			, , ,	1	
		(iii) Bed	cause it bonds to the iron/haemoglobin Allow blocks site		
			/CO has greater affinity for haemoglobin		
			/carboxyhaemoglobin more stable than oxyhaemoglobin		
				1	
		Disp	laces <u>oxygen</u>		
			Or prevents transport of <u>oxygen</u>		
			QoL	_	
				1	
					[16]
2.	(a)	A ligand is	an electron pair / lone pair donor Allow uses lone / electron pair to form a		
			co-ordinate bond	1	
		A bidentat	te ligand donates two electron pairs (to a	ı	
		transition	metal ion) from different atoms / two atoms (on molecule / ion)		
			QoL	4	
				1	

(b) CoCl₄²⁻ diagram

Tetrahedral shape

109°28′

Four chlorines attached to Co with net 2–

charge correct

Charge can be placed anywhere, eg on separate

formula

Penalise excess charges

Allow 109° to 109.5°

[Co(NH₃)₆]²⁺ diagram

Octahedral shape

90°

Six ammonia / NH₃ molecules attached to Co with 2+ charge correct

Allow 180° if shown clearly on diagram CE= 0 if wrong complex but mark on if only charge is incorrect

(c) In different complexes the <u>d</u> orbitals / <u>d</u> electrons (of the cobalt) will have different energies / <u>d</u> orbital splitting will be different

Light / energy is absorbed causing an electron to be excited

Different frequency / wavelength / colour of light will be absorbed / transmitted / reflected

1

1

1

1

1

1

1

Allow the correct equation involving I₃⁻ $S_2O_8^{2-} + 3I^- \longrightarrow 2SO_4^{2-} + I_3^-$

[4]

4. (a)
$$[Fe(H_2O)_6]^{2+} + 2NH_3 \rightarrow Fe(H_2O)_4(OH)_2 + 2NH_4^+$$

Allow equation with OH^- provided equation showing formation of OH^- from NH_3 given

1

1

1

$$[\text{Fe}(\text{H}_2\text{O})_6]^{2^+} + \text{CO}_3^{2^-} \rightarrow \text{Fe}\text{CO}_3 + 6\text{H}_2\text{O}$$

1

Green precipitate

effervescence incorrect so loses M4

1

(b) (i) Colourless / (pale) green changes to pink / purple (solution) Do not allow pale pink to purple

1

1

Just after the end-point MnO₄ is in excess / present

1

(ii)
$$MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$$

Moles KMnO₄ = $18.7 \times 0.0205 / 1000 = (3.8335 \times 10^{-4})$ Process mark

1

Moles Fe²⁺ =
$$5 \times 3.8335 \times 10^{-4} = 1.91675 \times 10^{-3}$$

Mark for $M2 \times 5$

1

Moles Fe²⁺ in 250 cm³ = $10 \times 1.91675 \times 10^{-3}$ = 0.0191675 moles in 50 cm³

> Process mark for moles of iron in titration (M3) × 10

> > 1

Original conc Fe²⁺ = $0.0191675 \times 1000 / 50 = 0.383 \text{ mol}$ dm^{-3}

Answer for moles of iron (M4) \times 1000 / 50 Answer must be to at least 2 sig. figs. (0.38)

		1
		[11]
5.	С	r41
6.	D	[1]
7.	R	[1]
,.	D	[1]