Kinetics & Chemical Equilibria Test Answers

1.	(a)	Activation energy;-		
		The minimum energy needed for a reaction to occur / star	rt (1) 1	
	(b)	Catalyst effect:- Alternative route (or more molecules have Ea) (1) Lower activation energy (1)	2	
		Increase in moles of gas:- Position of E_{mp} unchanged (1) More molecules with E_{mp} (1) Area under curve increases (1) Molecules with $E \ge E_a$ increased (1) emperature decreased:- Position of E_{mp} moves to the left (1) More molecules with E_{mp} (1) Area under curve unchanged (1) Molecules with $E \ge E_a$ decreased (1) atalyst introduced:- Position of E_{mp} unchanged (1) Molecules with E_{mp} unchanged (1) Area under curve unchanged (1) Molecules with $E \ge E_a$ increased (1)	12	[15]
2.	(a) re	minimum energy (1) equired before a reaction can occur or go or start (1)	2	
	(b) w	speeds up (changes) reaction rate (1) ithout being (chemically) changed (used up) (1)	2	

(c) (i)

(ii)

(iii) fewer collisions (1)
W used up (1)
or reactants
or reagents
or fewer particles

[10]

6

3. (a)

(b) See above

(c) Energy < E_a or must have enough energy (to react) (1) 1 (d) Increase concentration (or pressure) (1) 1 (e) Many (1) more molecules have $E > E_a$ / enough energy (1) NOT KE increases with T 2 [10] 4. (a) Stoppered flask or similar with side arm Allow gas outlet through stopper. 1 Calibrated container for collection eg gas syringe Allow collection over water, but must use calibrated vessel for collection. Lose 1 mark if apparatus is not gas tight. 1 (b) Plot a graph of 'volume (of gas)' against 'time' 1 Determine the slope (gradient) at the beginning 1 (c) Repeat with same volume **or** concentration of hydrogen peroxide <u>and</u> at the same temperature Ignore references to results. Do not allow 'keep everything the same' or words to that effect. Must mention volume or concentration and temperature. 1 Add cobalt(II) chloride to one experiment 1 [6]

5. (a) (i) $C + 3D \longrightarrow 2A + B$

		11 1 2		
	(ii)	mol ⁻¹ dm ³	1	
	(iii)	(forward reaction is) exothermic or more products forme	ed 1	
(b)	(i)	for $N_2O_4 M_r = 92.0$	1	
		$Mol = \frac{36.8}{92.0} = 0.400$	1	
	(ii)	mol N ₂ O ₄ reacted = 0.400 – 0.180 = 0.220	1	
		mol NO ₂ formed = 0.440	1	
	(iii)	$K_c = (NO_2)^2$ (N_2O_4)	1	
		=	1	
		= 0.067	1	
	(iv)	move to NO ₂ / to right / forwards	1	
		none	1	[12]
(,	a) (i) Increase (if wrong no further marks in part (i)	1	
		higher <i>P</i> gives lower yield or moves to left	1	
		Eqm shifts to reduce P or eqm favours side with fewer me	oles	

Endothermic if wrong no further marks in part (ii)

1

1

6.

(ii)

increase T increases yield or moves to right

1

Eqm shifts to reduce \emph{T} or eqm favours endothermic direction

Moles of iodine = 0.023(b) (i) If wrong no marks in (i)

1

Moles of HI = 0.172

1

If \times 2 missed, max 1 in part (iv)

$$K_c = \frac{[H_2][I_2]}{[HI]^2}$$

(ii)

must be square brackets (penalise once in paper) - if round, penalise but mark on in (iv) if K_c wrong, no marks in (iv) either but mark on from a minor slip in formula

1

V cancels in K_c expression (iii)

> or no moles same on top and bottom of expression or total moles reactants = moles products, i.e. total no of moles does not change

> > 1

(iv)
$$K_c = \frac{(0.023)^2}{(0.172)^2}$$

Conseq on (i)

1

= 0.0179 or 1.79 ×
$$10^{-2}$$

Allow 0.018 or 1.8 × 10^{-2}

1

1

 $K_c = 55.9 \text{ or } 56$ (v) Conseq i.e. (answer to (iv)) $^{-1}$

[13]

7. (a) Rate forward reaction = rate backward reaction (1)

Concentrations of reactants and products are constant (1)

2

System opposes change (1) (b)

Moves to the side with fewer moles (1)

In this case NH_3 (2 moles) on right side $< N_2 + H_2$ together (4 moles) on left side of equation (1)

3

(c) Too expensive to generate etc (1)

	(d)	(i)	Yield of ammonia increases (1)		
			Exothermic reaction favoured (1)		
			System moves to raise temp / or oppose decrease in temp	(1) 3	
		(ii)	Faster reaction (1)	1	
		(iii)	Balance between rate and yield (1)	1	[11]
8.	C				
9.	В				[1]
10.	В				[1]
					[1]
11.	D				[1]
12.	Α				[1]