POLYMERS

VISUAL CHEM CARDS

www.chemtextbook.com

During polymerisation large numbers of **monomers** become connected by covalent bonds to for a single long molecule – a polymer.

Polymers typically consist of 10,000-20,0000 monomers.

Linear polymer

Branched polymer

Cross-linked polymer

Addition Polymers

alkene (unsaturated)

polyalkene (saturated)

MONOMER

POLYMER

Monomers are joined together by C-C bonds formed by the sharing of C=C π electrons to form long chains (polymers).

Common Addition Polymers

Name(s)	Formula	Monomer	Uses
Polyethene	-(CH ₂ -CH ₂) _n -	ethene CH ₂ =CH ₂	film wrap, plastic bags
Polypropropene	-[CH ₂ -CH(CH ₃)] _n -	propene CH ₂ =CHCH ₃	carpet, upholstery
Poly(vinyl chloride) (PVC)	-(CH ₂ -CHCl) _n -	chloroethene CH₂=CHCl (vinyl chloride)	pipes, bottles, flooring
Polystyrene (PS)	−[CH ₂ -CH(C ₆ H ₅)] _n −	phenylethene CH₂=CHC ₆ H₅ (styrene)	toys, cabinets packaging (foamed)
Polyacrylonitrile (PAN, Orlon, Acrilan)	−(CH ₂ -CHCN) _n −	prop-2-enenitrile CH ₂ =CHCN (acrylonitrile)	rugs, blankets clothing
Polytetrafluoroethene (PTFE, Teflon)	-(CF ₂ -CF ₂) _n -	tetrafluoroethene CF ₂ =CF ₂	non-stick surfaces

Formation of Addition Polymers

$$R-O-O-R \rightarrow 2R-O \bullet$$

$$R-O-\stackrel{\downarrow}{C}=\stackrel{\downarrow}{C} \rightarrow R-O-\stackrel{\downarrow}{C}-\stackrel{\downarrow}{C} \bullet$$

Initiation step

Propagation step

$$\begin{array}{c} R-O-\dot{\varsigma}-\dot{\varsigma}\left(\dot{\varsigma}-\dot{\varsigma}\right)\dot{\varsigma}-\dot{\varsigma}\stackrel{\bullet}{\leftarrow} \stackrel{\bullet}{\leftarrow} \dot{\varsigma}-\dot{\varsigma}\left(\dot{\varsigma}-\dot{\varsigma}\right)\dot{\varsigma}-\dot{\varsigma}-O-R \\ I \\ R-O-\dot{\varsigma}-\dot{\varsigma}\left(\dot{\varsigma}-\dot{\varsigma}\right)\dot{\varsigma}-\dot{\varsigma}-\dot{\varsigma}-\dot{\varsigma}-\dot{\varsigma}\left(\dot{\varsigma}-\dot{\varsigma}\right)\dot{\varsigma}-\dot{\varsigma}-O-R \end{array}$$

Termination step

Three Step Process

Initiation step: formation of free radicals from an initiator (e.g. ROOR) by treatment with heat or light.

Propagation step: chain growth through the interaction of free radicals combine with monomer

Termination step: occurs when two free radicals combine.

Free Radical: an atom, molecule, or ion that has an unpaired valence electron.

Condensation Polymers

Some Everyday Condensation Polymers

Туре	Formula	Monomers Components	Uses
polyester	\sim [CO(CH ₂) ₄ CO-OCH ₂ CH ₂ O] _n \sim	HOOC-(CH ₂) ₄ -COOH HO-CH ₂ CH ₂ -OH	fabrics
polyester PET	0-(CH ₂) ₂ -0 ₇₇	HOOC-C ₆ H ₄ -COOH HO-CH ₂ CH ₂ -OH	water bottles packaging
polyamide Nylon 66	~[CO(CH ₂) ₄ CO-NH(CH ₂) ₆ NH] _n ~	HOOC-(CH ₂) ₄ -COOH H ₂ N-(CH ₂) ₆ -NH ₂	fibres for textiles and carpets and molded parts
polyamide Kevlar	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	HOOC-C ₆ H ₄ -COOH H ₂ N-C ₆ H ₄ -NH ₂	personal armour /protection musical instruments
polyurethane Lycra Spandex	CH ₃ O N N O (CH ₂) ₂ -O ₇	HOCH ₂ CH ₂ OH H ₃ C N C O	clothing home furnishings