POLYMERS # VISUAL CHEM CARDS www.chemtextbook.com During polymerisation large numbers of **monomers** become connected by covalent bonds to for a single long molecule – a polymer. **Polymers** typically consist of 10,000-20,0000 monomers. Linear polymer Branched polymer Cross-linked polymer ### **Addition Polymers** alkene (unsaturated) polyalkene (saturated) MONOMER **POLYMER** Monomers are joined together by C-C bonds formed by the sharing of C=C π electrons to form long chains (polymers). #### **Common Addition Polymers** | Name(s) | Formula | Monomer | Uses | |---|---|---|---| | Polyethene | -(CH ₂ -CH ₂) _n - | ethene
CH ₂ =CH ₂ | film wrap, plastic
bags | | Polypropropene | -[CH ₂ -CH(CH ₃)] _n - | propene
CH ₂ =CHCH ₃ | carpet,
upholstery | | Poly(vinyl chloride)
(PVC) | -(CH ₂ -CHCl) _n - | chloroethene
CH₂=CHCl
(vinyl chloride) | pipes, bottles,
flooring | | Polystyrene
(PS) | −[CH ₂ -CH(C ₆ H ₅)] _n − | phenylethene
CH₂=CHC ₆ H₅
(styrene) | toys, cabinets
packaging
(foamed) | | Polyacrylonitrile
(PAN, Orlon, Acrilan) | −(CH ₂ -CHCN) _n − | prop-2-enenitrile
CH ₂ =CHCN
(acrylonitrile) | rugs, blankets
clothing | | Polytetrafluoroethene
(PTFE, Teflon) | -(CF ₂ -CF ₂) _n - | tetrafluoroethene
CF ₂ =CF ₂ | non-stick
surfaces | #### **Formation of Addition Polymers** $$R-O-O-R \rightarrow 2R-O \bullet$$ $$R-O-\stackrel{\downarrow}{C}=\stackrel{\downarrow}{C} \rightarrow R-O-\stackrel{\downarrow}{C}-\stackrel{\downarrow}{C} \bullet$$ Initiation step Propagation step $$\begin{array}{c} R-O-\dot{\varsigma}-\dot{\varsigma}\left(\dot{\varsigma}-\dot{\varsigma}\right)\dot{\varsigma}-\dot{\varsigma}\stackrel{\bullet}{\leftarrow} \stackrel{\bullet}{\leftarrow} \dot{\varsigma}-\dot{\varsigma}\left(\dot{\varsigma}-\dot{\varsigma}\right)\dot{\varsigma}-\dot{\varsigma}-O-R \\ I \\ R-O-\dot{\varsigma}-\dot{\varsigma}\left(\dot{\varsigma}-\dot{\varsigma}\right)\dot{\varsigma}-\dot{\varsigma}-\dot{\varsigma}-\dot{\varsigma}-\dot{\varsigma}\left(\dot{\varsigma}-\dot{\varsigma}\right)\dot{\varsigma}-\dot{\varsigma}-O-R \end{array}$$ Termination step #### **Three Step Process** **Initiation step**: formation of free radicals from an initiator (e.g. ROOR) by treatment with heat or light. **Propagation step:** chain growth through the interaction of free radicals combine with monomer **Termination step:** occurs when two free radicals combine. **Free Radical:** an atom, molecule, or ion that has an unpaired valence electron. ## **Condensation Polymers** ### **Some Everyday Condensation Polymers** | Туре | Formula | Monomers
Components | Uses | |----------------------------------|--|---|--| | polyester | \sim [CO(CH ₂) ₄ CO-OCH ₂ CH ₂ O] _n \sim | HOOC-(CH ₂) ₄ -COOH
HO-CH ₂ CH ₂ -OH | fabrics | | polyester
PET | 0-(CH ₂) ₂ -0 ₇₇ | HOOC-C ₆ H ₄ -COOH
HO-CH ₂ CH ₂ -OH | water bottles
packaging | | polyamide
Nylon 66 | ~[CO(CH ₂) ₄ CO-NH(CH ₂) ₆ NH] _n ~ | HOOC-(CH ₂) ₄ -COOH
H ₂ N-(CH ₂) ₆ -NH ₂ | fibres for textiles
and carpets and
molded parts | | polyamide
Kevlar | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- | HOOC-C ₆ H ₄ -COOH
H ₂ N-C ₆ H ₄ -NH ₂ | personal armour
/protection
musical instruments | | polyurethane
Lycra
Spandex | CH ₃ O N N O (CH ₂) ₂ -O ₇ | HOCH ₂ CH ₂ OH H ₃ C N C O | clothing
home furnishings |