Energetics Test ANSWERS

I. (a) enthalpy (or energy) to break (or dissociate) a bond;
averaged over different molecules (environments);
enthalpy (or heat energy) change when one mole of a compound;
I
is formed from its elements;
in their standard states;
(b) enthalpy change $=\Sigma$ (bonds broken) $-\Sigma$ (bonds formed) or cycle;
$=4 \times 388+163+2 \times 146+4 \times 463-(944+8 \times 463)$;
(or similar)
$=-789$;
(+ 789 scores I only)
(c) (i) zero;
(ii) $A H=\Sigma$ (enthalpies of formation of products) $-\Sigma$ (enthalpies of formation of reactants)

$$
=4 \times-242-(75+2 \times-133) ;
$$

= -777;
(+ 777 scores one only)
(d) mean bond enthalpies are not exact
(or indication that actual values are different from real values)
2. (a) enthalpy change (or enthalpy of reaction) is independent of route (1)

$$
\begin{aligned}
& \Delta H=\Sigma \Delta H_{f}^{\Theta} \text { prods }-\Sigma \Delta H_{f}^{\Theta} \text { reactants (or cycle) (I) } \\
& \text { minimum correct cycle is: }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\Delta H & =-642-286-(-602+2 \times-92)(1) \\
= & -142(\mathrm{~kJ} \mathrm{~mol}
\end{array}\right)(\mathrm{I}) .
$$

(b) $\quad \Delta \mathrm{H}=m c T(\mathrm{I}) \quad($ or $m c \Delta T)$

$$
=50 \times 4.2 \times 32=6720 \mathrm{~J}=6.72 \mathrm{~kJ}(\mathrm{I})
$$ mark is for 6720 J or 6.72 kJ

moles $\mathrm{HCl}=\frac{\mathrm{vol}}{1000} \times$ conc $=\frac{50}{1000} \times 3(1)$
$=0.15$ (1)
if error here mark on conseq.
Therefore moles of MgO reacted $=$ moles $\mathrm{HCl} / 2$ (I) (mark is for/2, CE if not/2)
$=0.15 / 2=0.075$
Therefore $\Delta H=6.72 / 0.075$ (I)

$$
=-90 \mathrm{~kJ}^{\left(\mathrm{mol}^{-1}\right)}
$$

kJ must be given, allow 89 to 91
value (I)
sign (I); this mark can be given despite CE for /2

Note various combinations of answers to part (c) score as follows:

$$
\begin{aligned}
& -89 \text { to }-9 \mathrm{lkj}(8)(\text { or }-89000 \text { to } 91000 \mathrm{~J}) \\
& \text { no units (7) } \\
& +89 \text { to }+91 \mathrm{~kJ}(\mathbf{7})(\text { or }+89000 \text { to }+91000 \mathrm{~J}) \\
& \text { no units (6) } \\
& -44 \text { to }-46 \mathrm{~kJ}(5) \text { (or }-44000 \text { to }-46000 \mathrm{~J}) \\
& \text { no units (4) if units after } 6.72 \text { or } 6720 \text { (5) }
\end{aligned}
$$

$$
\begin{aligned}
& +44 \text { to }+46 \mathrm{~kJ}(4)(\text { or }+44000 \text { to }+46000) \\
& \text { if no units and } \\
& \text { if no units after } 6.72 \text { or } 6720 \text { (3) } \\
& \text { otherwise check, could be (4) }
\end{aligned}
$$

3. (a) (i) $\mathrm{I} / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$ (I)

Ignores s
(ii) $\quad \Delta \mathrm{H}=(\Sigma)$ bonds broken - (Σ)bonds formed (I)
$=1 / 2 \times 944+3 / 2 \times 436-3 \times 388$ (I)
$=-38 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathrm{I})$
Ignore no units, penalise wrong units
Score 2/3 for-76
$1 / 3$ for +38
Allow I/3 for +76
(b) $4(\mathrm{C}-\mathrm{H})+(\mathrm{C}=\mathrm{C})+(\mathrm{H}-\mathrm{H})-(6(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{C}))=-\mathrm{I} 36(\mathrm{I})$

OR (C=C) $+(\mathrm{H}-\mathrm{H})-((\mathrm{C}-\mathrm{C})+2(\mathrm{C}-\mathrm{H}))=-136$
$2(\mathrm{C}-\mathrm{H})=836(\mathrm{I})$
$(\mathrm{C}-\mathrm{H})=418\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathrm{I})$
Note: allow (I) for-836
another (I) for -418
4. (a) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+4 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ (I) (or
multiple)
(b) (i)
(I) $=0.0250$ (I)
allow 0.025
allow conseq on wrong M_{r}
I.45/I00, CE; ${ }^{\frac{1.45}{58.1}}$ C.E.
(ii) heat released $=\mathrm{mc} \Delta \mathrm{T}$
$=100 \times 4.18 \times 58.1$ (1)
if 1.45 used in place of $100 C E=0$
$=24300 \mathrm{~J}$ (I) (or 24.3 kJ)
allow 24200 to 24300
ignore decimal places
units tied to answer
If use $0.1 \times 4.18 \times 5 \mathrm{I} .8$ allow $1 / 2$ for 24.3 with no units
(iii) $\frac{24.3}{0.0250}=-972\left(\mathrm{k} \mathrm{mol}^{-1}\right)$
allow -968 to -973
allow +972
allow conseq allow no units penalise wrong units
(c) (i) Heat loss (I) or energy loss
do not allow incomplete combustion
(ii) Difference: more negative (I) (or more exothermic)

Qol mark
Explanation: heat (or energy) released when water vapour condenses (I) or heat/energy required to vaporise water or water molecules have more energy in the gaseous state
(d) $\Delta \mathrm{H}=\Sigma \Delta H_{\text {reactants }}-\Sigma \Delta H_{\text {products }}$ (I)

ignore units even if wrong
Allow I/3 for +773
5. D
6. D
7. B
8. C
9. A
10. A

