Energetics Test ANSWERS

(a) enthalpy (or energy) to break (or dissociate) a bond;

averaged over different molecules (environments);

enthalpy (or heat energy) change when one mole of a compound;

is formed from its elements;

in their standard states;

(b) enthalpy change = Σ (bonds broken) – Σ (bonds formed) or cycle;

= $4 \times 388 + 163 + 2 \times 146 + 4 \times 463 - (944 + 8 \times 463)$; (or similar)

= -789; (+ 789 scores 1 only)

(c) (i) zero;

(ii) $AH = \Sigma$ (enthalpies of formation of products) - Σ (enthalpies of formation of reactants)

= $4 \times -242 \cdot (75 + 2 \times -133)$;

= -777;
(+ 777 scores one only)

(d) mean bond enthalpies are not exact

(or indication that actual values are different from real values)

ı

I

I

I

I

I

I

I

2. (a) enthalpy change (or enthalpy of reaction) is independent of route (1)

 $\Delta H = \Sigma \Delta H_f^{\bullet}$ prods - $\Sigma \Delta H_f^{\bullet}$ reactants (or cycle) (1) minimum correct cycle is:

$$\frac{\text{MgO + 2HCl}}{\text{Mg + Cl}_2 + \text{H}_2 + \frac{1}{2}\text{O}_2}$$

$$\Delta H = -642 - 286 - (-602 + 2 \times -92)$$
 (I)
= -142 (kJ mol⁻¹) (I)

penalise this mark for wrong units +142 scores 1 mark out of the last three

4

(b)
$$\Delta H = mcT (1)$$
 (or $mc\Delta T$)
= $50 \times 4.2 \times 32 = 6720 \text{ J} = 6.72 \text{ kJ} (1)$
mark is for 6720 J or 6.72 kJ

moles HCI =
$$\frac{\text{vol}}{1000} \times \text{conc} = \frac{50}{1000} \times 3$$
 (I) = 0.15 (I)

if error here mark on conseq.

Therefore moles of MgO reacted = moles HCl/2 (1) (mark is for/2, CE if not/2) = 0.15/2 = 0.075

Therefore
$$\Delta H = 6.72/0.075$$
 (1)
= -90 kJ (mol⁻¹)

kJ must be given, allow 89 to 91 value (1)

sign (1); this mark can be given despite CE for /2

8

Note various combinations of answers to part (c) score as follows:

[12]

3. (a) (i)
$$1/2 N_2 + 3/2 H_2 \rightarrow NH_3$$
 (1)
Ignore s s

(ii)
$$\Delta H = (\Sigma) \text{bonds broken} - (\Sigma) \text{bonds formed (1)}$$

= 1/2 × 944 + 3/2 × 436 - 3 × 388 (1)
= -38 kJ mol⁻¹ (1)
Ignore no units, penalise wrong units
Score 2/3 for -76
1/3 for +38
Allow 1/3 for +76

4

3

(b)
$$4 (C-H) + (C=C) + (H-H) - (6 (C-H) + (C-C)) = -136$$
 (1)
OR $(C=C) + (H-H) - ((C-C) + 2 (C-H)) = -136$
 $2 (C-H) = 836$ (1)
 $(C-H) = 418 \text{ (kJ mol}^{-1})$ (1)
Note: allow (1) for -836
another (1) for -418

[7]

4. (a)
$$C_3H_6O + 4O_2 \rightarrow 3CO_2 + 3H_2O$$
 (1) (or multiple)

(b) (i)
$$\frac{1.45}{58}$$
 (1) = 0.0250 (1) allow 0.025 allow conseq on wrong M_r 1.45/100, CE; $\frac{1.45}{58.1}$ C.E.

(ii) heat released =
$$mc\Delta T$$

= $100 \times 4.18 \times 58.1$ (1)
if 1.45 used in place of 100 CE = 0

24.3