Electrode Potentials & Cells Test Answers

١. 0.60 V (a) (i) ı $H_2O + H_2SO_3 \rightarrow SO_4^2 + 4H^+ + 2e^-$ (ii) $2IO_{3}^{-} + 2H^{+}5H_{2}O_{2} \rightarrow 5O_{2} + I_{2} + 6H_{2}O$ **Species** (b) (i) I **Balanced** I The concentration of the ions change or are no longer standard or (ii) the e.m.f is determined when no current flows Ī (iii) Unchanged I (iv) Increased Equilibrium IO_3^{-}/I_2 displaced to the right Electrons more readily accepted or more reduction occurs or electrode becomes more positive (Q o L) I VO₂* (c) 5 or V $V^{2+} + 2H_2O \rightarrow VO_2^+ + 4H^+ 3e^-$ [12] 2. (a) (Standard) hydrogen (electrode) (1) I To allow transfer of electrons / provide a reaction surface (1) (b) (i) 298 K (I) (ii) Both F^{3+} (aq) and Fe^{2+} (aq) have a concentration of I mol dm⁻³ (I) (QoL) OR $[H^+]$ = I mol dm⁻³ NOT zero current or 100 kPa 3 (c) +1.34 V (I) $2~MnO_4^- + 5~H_2SO_3 \rightarrow 2~Mn^{2+} + 5~SO_4^{2-} + 3~H_2O~+4~H^+$ Correct species / order (I) Balanced and cancelled (1) Allow one for 2 MnO₄⁻ + 5 H₂SO₃ \rightarrow 2 Mn²⁺ + 5 SO₄²⁻ 3

 Ce^{4+} (aq) (1)

(d)

(i)

[12]

(ii)

```
VO_2^+ (aq) (1); Cl_2 (1)
                                 Penalise additional answers to zero
                                                                                                            3
                    Pt | Fe^{2+} (aq), Fe^{3+} (aq) || Ce^{4+} (aq), Ce^{3+} (aq) | Pt
             (e)
                    Correct species (I)
                    Correct order (I)
                                 Deduct one mark for each error
                                                                                                            2
                    Pt|H_2|H^+||Fe^{2+}|Fe
3.
              (a)
                                 Allow I for correct order of symbols but lose second mark for a
                                 wrong phase boundary(s) / Pt missing / extra Pt on RHS,
                                 additional phase boundary
                    Note, allow one mark only for correct symbol in reverse:
                    Fe|Fe^{2+}||H^+|H_2|Pt
                                 Allow dashed lines for salt bridge
                                 Ignore state symbols
                                 Ignore 2 if used before H<sup>+</sup>
                                                                                                            2
                   Electron donor
             (b)
                                 Allow (species that) loses electrons
                                 Do not allow reference to electron pairs
                                                                                                            I
                   Cl<sub>2</sub> / chlorine
             (c)
                                 If MI blank or incorrect cannot score M2
                    (Species on RHS / electron donor) has most positive / largest E^{\Theta} / has highest
                   potential
                                 Do not allow reference to e.m.f. or E(cell)
                                                                                                            I
                          CI / chlorine
             (d)
                   (i)
                    (ii)
                          Chlorine + I to chlorine 0
                                 CE if chlorine not identified in part (i)
                                 Allow chlorine + I to chlorine -I (in C\Gamma)
                                 Allow oxidation state decreases by one OR two
                                 Allow oxidation state changes by -1 OR -2
                                                                                                            Ī
                   4HOCI + 4H^{+} + 4OH^{-} \rightarrow 2CI_{2} + O_{2} + 6H_{2}O
             (e)
                    OR
                   4HOCI \rightarrow 2CI_2 + O_2 + 2H_2O
                                 Allow one mark for any incorrect equation that shows
                                 HOCI \rightarrow CI_2 + O_2
                                 Allow multiples
                                 Ignore state symbols
                                 Penalise one mark for uncancelled or uncombined species (eg
                                 H_2O + H_2O instead of 2H_2O)
                                                                                                            2
```

```
(f)
                   (i)
                           e.m.f. = 0.40 - (-1.25) = 1.65 \text{ (V)} / +1.65 \text{ (V)}
                                 Allow - 1.65 (V)
                                                                                                            I
                          2Zn + O_2 \rightarrow 2ZnO
                    (ii)
                                 Allow multiples
                                 Ignore state symbols
                                 Do not allow uncancelled species
                                 If more than one equation given, choose the best
                                                                                                            I
                   (iii)
                          A / stainless lid
                                 If M1 incorrect or blank CE=0
                          O_2 (electrode) has a more positive E^{\Theta} / oxygen (electrode) requires /
                          gains electrons from external circuit
                                 Or reference to the overall equation and a link to electrons going
                                 Allow oxygen is reduced and reduction occurs at the positive
                                 electrode
                          OR Zinc (electrode) has more negative E^{\odot}
                                 Do not allow reference to e.m.f. or E(cell)
                          (Cell) reaction(s) cannot be reversed / zinc oxide cannot be reduced to
                          zinc by passing a current through it / zinc cannot be regenerated
                                 Allow danger from production of gas / oxygen produced /
                                 hydrogen produced
                                                                                                            I
                                                                                                                     [14]
4.
                   H_2O_2
             (a)
                                 Ignore state symbols
                                                                                                            I
                    E \ominus Cl_2/Cl^- > E \ominus O_2/H_2O
             (b)
                                 Allow potential for chlorine/Cl<sub>2</sub> greater than for oxygen/O<sub>2</sub>
                                 Allow 1.36 > 1.23 / E cell = 0.13
                                                                                                            I
                   Cl_2 + H_2O \rightarrow 2Cl^- + 1/2O_2 + 2H^+
                                 Allow multiples
                                 Allow + HCl
                    Activation energy is high / light/UV provides the activation energy / light breaks
             (c)
                   chlorine molecule / CI-CI bond
                                 If light used to break CI-CI bond award I mark and ignore
                                 product e.g. Cl
                                                                                                            I
             (d)
                    O (-1) (in H<sub>2</sub>O<sub>2</sub>)
                                 Must give oxidation state of O in H_2O_2=-1
                                                                                                            ı
                   Changes to O(-2) (in water)
                                 Must give oxidation state of O in water = -2
                                 CE = 0/2 if refers to oxidation state of H changing
                    E^{\Theta} H_2O_2/H_2O > E^{\Theta} O_2/H_2O_2
             (e)
```

Allow stated in words Allow 1.77 > 0.68 / E cell = 1.09

$$2H_2O_2 \rightarrow O_2 + 2H_2O$$
Allow multiples
 H^+ and e^- must be cancelled

[8]

Ī

I

I

- **5.** (a) (i) Fe^{2+}
 - (ii) F₂O
 - (iii) Fe²⁺

Cl

Use list principle if more than two answers

(b) (i) e.m.f. = E(rhs) - E(lhs)

- (ii) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$
- (iii) Decrease (Increase is CE, no further marks)

Equilibrium (or reaction) shifts to R (or L if refers to half equation in table) (or in favour of more Fe³⁺) (or more Fe³⁺ formed) (or more electrons formed)

Electrode potential (for Fe³⁺/Fe²⁺) less positive (or decreases)

[10]

I

Ī

6. (a) (i) Co/Cobalt

If Co or Cobalt not given CE = 0 ignore case in symbol for Co

- (+) 4
- (+) 3
 Allow 4 and 3 in either order
- (ii) Li → Li⁺ + e⁻
 Ignore state symbols
 Allow e without -ve sign
 Do not allow equilibrium sign
- (iii) Platinum is a conductor

```
ı
                     (Platinum is) unreactive/inert
                            Ignore mention of surface area or catalyst
                            Allow 2 marks if two properties given on one answer line
                            Apply list principle to contradictions/wrong answers
                            Do not allow platinum resists corrosion
                                                                                                           Ī
              (iv)
                     Li reacts with water/forms lithium hydroxide
                            Allow water breaks down (or is electrolysed) on re-charge
                                                                                                           ı
               Pt | SO_3^{2-}(aq), SO_4^{2-}(aq) | | CIO_3^{-}(aq), CI^{-}(aq) | Pt
(b)
        (i)
                            State symbols an ',' not necessary
                            Allow | in place of ',' NOT ',' in place of |
                            Ignore H<sup>+</sup> and H<sub>2</sub>O
                            Deduct one mark for each mistake (e.g. Pt missed twice counts as
                            two mistakes)
                            Allow reverse order for whole cell
                            Pt \mid C\Gamma, CIO_3^- \mid SO_4^{2-}, SO_3^{2-} \mid Pt
                                                                                                           2
                     ClO_3^- + 3SO_3^{2-} \rightarrow Cl^- + 3SO_4^{2-}
              (ii)
                     Oxidising agent ClO<sub>3</sub><sup>-</sup>
                     Reducing agent SO<sub>3</sub><sup>2-</sup>
                                                                                                                     [12]
7.
               By definition
       (a)
                            allow 'set to this value'
       (b)
               1.23 V
                            Allow + or -
       (c)
              Pt|H_2(g)|OH^-(aq),H_2O(I)||O_2(g)|H_2O(I),OH^-(aq)|Pt
                            H<sub>2</sub>O not essential, allow reverse order
              Correct but with Pt missing
              Includes Pt with correct representation
       (d)
              Uses O_2 + 2H_2O + 4e^- \rightarrow 4OH^-
              And (2\times) 2OH^- + H_2 \rightarrow 2H_2O + 2e^-
              2H_2 + O_2 \rightarrow 2H_2O
       (e)
              Increases the surface area (so reaction faster)
       (f)
               Overall reaction is the same (2H_2 + O_2 \rightarrow 2H_2O)
                            Or shows e.m.f. is the same
       (g)
              Hydrogen and oxygen supplied continuously
              OR
```

Can be operated without stopping to recharge

www.chemtextbook.com

Or can be refuelled quickly Allow any one mark

	(h)	Hydrogen may need to be made using an energy source that is not 'carbon neutral'	ı	
			I	[10]
8.	D			[1]
9.	D			[1]