BONDING & PERIODIC TABLE TEST ANSWERS

1.	QoL	Bonding <u>Both</u> cov	valent	
		(linked statemer	nt)	1
		Structure Iodine	= molecular /l. (stated or in diagram)	•
		[treat incorrect (diagram as contradiction]	
		-		1
		Diamond = giant molec	ular/macromolecular/giant	
		covalent/gianta	atomic (stated only)	
		Reference to van	der Waals'/dipole-dipole = contradiction	1
	QoL	lodine Weak van dipole	der Waals' forces / induced dipole-induced	
				1
	Diamor	d Covalent bonds wo	ould need to be <u>broken</u>	
				1
	Many /	strong covalent bonds (DR much energy needed	
		IIEU LO M5 [If ionic/metallic	or near miss	
		substance]		
		[If hydrogen bon	nding suggested, for I2 lose M2 & M4; for	
		diamond lose M	3,M5&M6]	1
2.	(a)	Ability/power of an ator density or electron clou	m/element/nucleus to withdraw electron Id or a pair of electrons (towards itself);	
		Not withdraw ar	n electron	
		lf refto ionic, me	etallic , imf etc then CE = 0	1
				I
		From a <u>covalent bond</u> c Not distort	or from a shared pair of electrons;	
		Not remove elec	trons	
				1
	(b) Va	n der Waals/ vdw/Lond	on/ <u>temporary</u> (induced) dipole/	
	dis	persion forces;		1
	Цу	drogen bonds/4 bonds		
	пу	a ogen bonus/ E bonus,	1	

[6]

1

(c)	:) (Large) electronegativity difference between N + H/ difference of 0.9/ N v electronegative:		
		Insufficient to say $N=3.1$ and $H=2.1$	1
		Forms N δ– / H δ+ or dipole explained in words; Not N becomes (fully) negative or vice versa	
			1
		<u>Lone pair on N</u> attracts/forms weak bonds with H (δ+); <i>OWC</i>	
		Can score M2 and 3 from a diagram	1
	(d)	Co-ordinate/dative;	
		If not correct then CE = 0. If covalent/blank mark on.	1
		Both electrons/ lone pair (on P/PH ₃)	
		Not lone pair on hydrogen	1
		Shares/donated from P(H ₃)/ to H(δ +);	1
	(e)	3 bonds and 1 lp attached to As;	
		Must label H and As atoms Accept distorted tetrahedral not bent tetrahedral	1
		Pyramidal/tetrahedral/trigonal pyramidal;	
		Not bipyramidal/triangular	1
	(f)	(Only) weak Van der Waals forces between molecules /AsH₃ has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds;	
		Accept has no H bonds. Ignore dp-dp in AsH₃ provided ammonia has stronger IMF. If between atoms mentioned CE=0	
		Break bonds CE = 0	1
	(g)	$4AsCl_3 + 3NaBH_4 \rightarrow 4AsH_3 + 3NaCl + 3BCl_3;$	
		Accept multiples	1

(b) Trend: Decreases

[If trend wrong = CE = 0]

Increase in size of ion/atom / more shells / decrease in charge density / decrease in charge size ratio

Weaker attraction for delocalised/free/sea of electrons / weaker metallic bonding

[Ignore shielding] [van der Waals' etc. = CE = 0 for M2 and M3]

4. (a)

[Diagrams must be complete and accurate]

- (b) (i) <u>Attraction</u> /electrostatic forces/bonds/attractions between (positive) ions/lattice and <u>delocalised/free</u> electrons/sea of electrons. [Not metallic bonding] [Not just 'forces']
 - (ii) Electrostatic attractions/forces between ions or attractions between (oppositely charged) ions/ Na⁺ & Cl⁻ [Not ionic bonding]
 - (iii) (Here) the ionic bonding in NaCl is stronger/requires more energy to break than the metallic bonding in Na
 - **Qol** Accept 'bonding/forces of attraction in NaCl is strong<u>er</u> than in Na' [If IMF/molecules/van der Waals'/dipole-dipole mentioned in parts(i) or (ii), then CE = 0 for parts (i) and/or(ii) and CE = 0 for part(iii)]

1

1

1

1

2

1

1

[11]

	(c)	Comparison: Sodium conducts and sodium chloride does NOT conduct <i>Allow 'only Na conducts'</i>		
		Accept 'Na conducts, NaCl only conducts when molten' [Do not accept sodium conducts better than sodium chloride		
		etc.]	1	
		Explanation: (Delocalised) electrons flow though the metal	1	
		Allow e- move/carry current/are charge carriers/transfer charge. [Not 'electrons carry electricity'] [Not 'NaCl has no free charged particles']		
		<u>lons</u> can't move in solid salt	1	
	(d)	Layers can slide over each other – idea that ions/atoms/particles move [Not molecules]		
		[Not layers separate]	1	[12]
5.	(6	a) Oxygen more/very/highly electronegative (than hydrogen) OR oxygen has stronger attraction for <u>bonding</u> electrons / <u>bonding</u>		
		electrons drawn towards oxygen;	1	
		causes higher e- density round oxygen atom / causes H⁵ O⊱;	1	
	(b)	van der Waals' forces between oxygen <u>molecules;</u>	1	
		Hydrogen bonding between methanol molecules;	1	
		H-B stronger than van der Waals' OR stronger IMF in methanol; (if dipole-dipole forces in O₂ or methanol, allow comparison, hence max 2)		
		(if ionic/covalent etc. max 1) (mention of bond break = CE = 0)		
			1	[5]

6.	В	
7.	С	[1]
-		[1]
8.	C	[1]
9.	A	
10.	В	[1]
		[1]