

Mass, Moles & Number of Particles

Nigel Freestone www.chemtextbook.com

Mass, Moles & Number of Particles

The **mole** links the mass of a substance to the number of **formula units** (particles – atoms, molecules) it contains. The mass of one mole of an element or compound is referred to as its **molar mass**, which is its **relative atomic mass** (A_r) or **relative formula mass** (M_r) in grams.

Molar Mass (M_r) = Relative Formula Mass (RFM) in grams

If you have m grams of a substance which has a molar mass of M_r , then the amount of a substance in moles, n, is given by:

Molar Mass (M_r) = Mass (m)/ Number of Moles (n)

Number of Moles (n) = Mass (m) / Molar Mass (M_r)

Number of Particles = Number of Moles (n) x 6.02 x 10²³

If you know the values of any two of n, m or M_r, then you can calculate the third using one of the equations above.

Chemistry Calculating Frame for Moles, Mass and Number of Particles of Atoms & Molecules

The following simple calculating frame can be used to determine mass, number of moles, the number of particles and volume for elements and chemical compounds.

	Symbols	Equations	Given information	Calculated information
Chemical Formula	$X_a Y_b Z_c$			
Relative Formula Mass	Mr			
Mass	m	n x M _r		
Number of Particles		n x 6.02 x 10 ²³		
Number of Moles	n	m/M _r		

Step 1: Construct a table based on the one above.

Step 2: Insert all given/known information in column 3. Note: M_r can be determined using A_r values from the Periodic Table.

Step 3: Identify which parameter(s) that need to be calculated in column 3 using a question mark.

Step 4: Using the equations in column 2 and the information in column 3, calculate the unknown values and insert in column 4.

Example 1: How many moles of sodium hydrogen carbonatite (NaHCO₃) are present in 12 g of NaHCO₃?

Data from periodic table: $A_r[Na] = 23$; $A_r[H] = 1$; $A_r[O] = 16$

	Symbols	Equations	Given data	Calculated values
Formula	NaHCO₃			
Relative Formula Mass	Mr			100
Mass (g)	m	n x M _r	12	
Number of Particles		n x 6.02 x 10 ²³		
Number of Moles	n	m/M _r	?	12/100 = 0.12
Volume (litre)	V	n x V _m		

Answer: 0.12 moles

Example 2: What is the mass of 0.25 moles of nitrogen dioxide (NO₂)?

Answer:

Data from periodic table: $A_r[N] = 14$; $A_r[O] = 16$

Relative Formula Mass (M_r) of $NO_2 = 14 + (16 \times 2) = 46$

	Symbols	Equations	Given information	Calculated information
Formula	NO ₂			
Relative Formula Mass	Mr			46
Mass	m	n x M _r	?	0.25 x 46 = 11.5
Number of Particles		n x 6.02 x 10 ²³		
Number of Moles	n	m/M _r	0.25	

Answer: 11.5 g

Example 3: How many formula units are present in 1.25×10^{-3} moles of aluminium sulfate, Al₂(SO₄)₃?

Data from periodic table: $A_r[AI] = 27$; $A_r[S] = 32$; $A_r[O] = 16$

Relative Formula Mass (M_r) of $Al_2(SO_4)_3 = (27 \times 2) + (32 \times 3) + (16 \times 12) = 342$

	Symbols	Equations	Given information	Calculated information
Formula	$Al_2(SO_4)_3$			
Relative Formula	Mr			
Mass				
Mass	М	n x M _r		
Number of Particles		n x 6.02 x 10 ²³	?	1.25 x 10 ⁻³ x 6.02 x 10 ²³
(formula units)				= 7.525 x 10 ²⁰
Number of Moles	N	m/M _r	1.25 10 ⁻³	

Example 4: How many formula units of calcium chloride (CaCl₂) are present in 11 g of CaCl₂?

	Symbols	Equations	Given information	Calculated information
Formula	CaCl ₂			
Relative Formula	Mr			111
Mass				
Mass	М	n x M _r	11	
Number of Particles		n x 6.02 x 10 ²³	?	0.1 x 6.02 x 10 ²³
(formula units)				= 6.02 x 10 ²²
Number of Moles	N	m/M _r	1.25 x 10 ⁻³	11/11 =0.1

Relative Formula Mass (M_r) of calcium chloride (CaCl₂) = 40 + (35.5 x 2) = 111

Number of moles (n) = mass / RFM = 11/111 = 0.1

Number of Formula Units = Number of Moles (n) x 6.02×10^{23} = $0.1 \times 6.02 \times 10^{23}$ = 6.02×10^{22}

Relative Formula Mass (M_r) of calcium chloride (CaCl₂) = 40 + (35.5 x 2) = 111

Number of moles (n) = mass / RFM = 11/111 = 0.1

Number of Formula Units = Number of Moles (n) x 6.02×10^{23} = 0.1 x 6.02×10^{23} = 6.02×10^{22}

? Practice Problems

- 1. How many moles of substance are present in the following?
 - a. 5.30 g of sodium carbonate, Na₂CO₃

- b. 0.35 g of zinc nitrate, Zn(NO₃)₂
- c. 0.008 g of sodium hydroxide, NaOH
- d. 1.25 g of calcium carbonate, CaCO₃
- e. 3.5 g of benzene, C₆H₆
- f. 12 g of glucose, $C_6H_{12}O_6$
- g. 1g of uranium dioxide, UO₂
- h. 0.3 g aluminium sulphate, Al₂(SO₄)₃
- i. 1.2 g iron (III) oxide, Fe_2O_3
- j. 3.4 g sulphur trioxide, SO_3
- 2. How many formula units are present in the following?
 - a. 0.25 moles of Cl₂
 - b. 5 moles of CO₂
 - c. 10g of CaCO₃
 - d. 2.45×10^{-3} moles of NH₃
 - e. 0.34 kg of Fe₃O₄
 - f. 2.56 moles of C_6H_6
 - g. 1 x 10⁻⁶ g of Au
 - h. 0.12 moles of CuSO₄
 - i. 1 tonne of N₂
 - j. 4.45 x 10⁻⁶ moles of (NH₄)₂CO₃
- 3. Determine the mass of the following:
 - a. 2 moles of carbon dioxide, CO₂
 - b. 0.01 moles of nitrogen dioxide, NO₂
 - c. $1 \times 10-5$ moles of benzene, C₆H₆
 - d. $2.03 \times 10-3$ moles of uranium dioxide, UO₂
 - e. 1.12 moles of sulphuric acid, H₂SO₄
 - f. 3×10^{-4} moles of calcium carbonate, CaCO₃
 - g. 1.2 moles of ethane, C₂H₄
 - h. 0.5 moles ethanoic acid, CH₃COOH
 - i. 1.25 x 10-3 moles sodium hydroxide, NaOH
 - j. 0.025 moles potassium dichromate, K₂Cr₂O₇

Answers are given on the next page.

Practice Problem Answers

1. How many moles of substance are present in the following?

```
Number of Moles = Mass/M<sub>r</sub>
```

- a. 5.30 g of sodium carbonate, Na₂CO₃ Answer M_r [Na(CO₃)₂] = 106 g mol⁻¹ Number of moles in 5.3 g of sodium carbonate = mass/M_r = 5.3/106 = 0.05
- b. 0.35 g of zinc nitrate, $Zn(NO_3)_2$ Answer $M_r [Zn(NO_3)_2] = 189 \text{ g mol}^{-1}$ Number of moles in 0.35 g of zinc nitrate = mass/M_r = 0.35/189 = **1.85 x 10^{-3}**
- c. 0.008 g of sodium hydroxide, NaOH Answer M_r [NaOH] = 40 g mol⁻¹ Number of moles in 0.008g of sodium hydroxide = mass/M_r = 0.008/40 = **2 x 10⁻⁴**
- d. 1.25 g of calcium carbonate, CaCO₃ Answer $M_r [CaCO_3] = 100 \text{ g mol}^{-1}$ Number of moles in 1.25g of calcium carbonate = mass/M_r = 1.25/100 = **0.0125**
- e. 3.5 g of benzene, C_6H_6 Answer $M_r [C_6H_6] = 78$ g mol⁻¹ Number of moles of benzene in 3.5g = mass/M_r = 3.5/78 = **0.045**
- f. 12 g of glucose, $C_6H_{12}O_6$ Answer $M_r [C_6H_{12}O_6] = 180 \text{ g mol}^{-1}$ Number of moles in 12g of glucose = mass/M_r = 12/180 = **0.067**
- g. 1g of uranium dioxide, UO₂
 Answer
 M_r [UO₂] = 270 g mol⁻¹
 Number of moles in 1g of uranium dioxide = mass/M_r = 1/270 = **3.7 x 10⁻³**
- h. 0.3 g aluminium sulphate, $Al_2(SO_4)_3$ Answer $M_r [Al_2(SO_4)_3] = 342 \text{ g mol}^{-1}$ Number of moles in 0.3g aluminium sulphate = mass/M_r = 0.3/342 = **8.77 x 10⁻⁴**
- i. 1.2 g iron (III) oxide, Fe_2O_3 Answer $M_r [Fe_2O_3] = 160 \text{ g mol}^{-1}$ Number of moles in 1.2 g iron (III) oxide = mass/ $M_r = 1.2/160 = 7.5 \times 10^{-3}$

 j. 3.4 g sulphur trioxide, SO₃ Answer M_r [SO₃] = 80 g mol⁻¹ Number of moles in 3.4 g sulphur trioxide, SO₃ = mass/M_r = 3.4 /80 = **0.0425**

2. How many formula units are present in the following?

Number of formula units = Number of moles $x 6.02 \times 10^{23}$

- a. 0.25 moles of Cl_2 Answer Number of molecules of Cl_2 in 0.25 moles = 0.25 x 6.02 x 10^{23} = **1.51 x 10^{23}**
- b. 5 moles of CO₂

Answer

Number of molecules of CO₂ in 5 moles = $5 \times 6.02 \times 10^{23}$ = **3.01 x 10²⁴**

c. 10g of CaCO₃ Answer

 M_r [CaCO₃] = 100 Number of moles in10g of CaCO₃ = mass/Mr = 10/100 = 0.1 Number of formula units in 10 g of CaCO₃ = 0.1 x 6.02 x 10²³ = **6.02 x 10²²**

d. 2.45 x 10⁻³ moles of NH₃ Answer

Number of formula units (molecules) of NH₃ in 2.45 x 10⁻³ moles = $2.45 \times 10^{-3} \times 6.02 \times 10^{23} = 1.48 \times 10^{21}$

e. 0.34 kg of Fe_3O_4

Answer Mr [Fe₃O₄] = 232 Number of moles of Fe₃O₄ in 340 g (0.34 kg) = mass/M_r = 340/232 = 1.47 Number of formula units in 0.24 kg of Fe₃O₄ = $1.47 \times 6.02 \times 10^{23}$ = **8.85 x 10²³**

f. 2.56 moles of C_6H_6

Answer

Number of particles (molecules) in 2.56 moles of C_6H_6 = 2.56 x 6.02 x 10²³ = **1.54 x 10²⁴**

- g. 1×10^{-6} g of Au Answer Number of moles of Au in 1×10^{-6} g = $1 \times 10^{-6}/197 = 5.08 \times 10^{-9}$ Number of atoms of Au in 1×10^{-6} g = $5.08 \times 10^{-9} \times 6.02 \times 10^{23}$ = **3.06 x 10¹⁵**
- h. 0.12 moles of CuSO₄

Answer Number of formula units of CuSO₄ in 0.12 moles = 0.12 x 6.02 x 10²³ = **7.22 x 10²²**

i. 1 tonne of N_2 Answer $M_r [N_2] = 28$ Number of moles of N₂ in 1000 g (1 tonne) = 1000/28 = 35.7Number of formula units in 1 tonne N₂ = $35.7 \times 6.02 \times 10^{23} = 2.15 \times 10^{25}$

- j. 4.45 x 10⁻⁶ moles of (NH₄)₂CO₃ Answer Number of formula units in 4.45 x 10⁻⁶ moles of (NH₄)₂CO₃ =4.45 x 10⁻⁶ x 6.02 x 10²³ = 2.68 x 10¹⁸
- 3. Determine the mass of the following:

Mass = Number of Moles x M_r

- a. 2 moles of carbon dioxide, CO₂
 Answer
 M_r [CO₂] = 44 g mol⁻¹
 Mass of 2 moles of carbon dioxide = number of moles x M_r = 2 x 44 = 88 g
- b. 0.01 moles of nitrogen dioxide, NO₂
 Answer
 M_r [NO₂] = 48 g mol⁻¹
 Mass of 0.01 moles of nitrogen dioxide = number of moles x M_r = 0.01 x 46 = 0.46 g
- c. 1×10^{-5} moles of benzene, C₆H₆ Answer $M_r [C_6H_6 = 78 \text{ g mol}^{-1}$ Mass of 1×10^{-5} moles of benzene = number of moles $\times M_r = 1 \times 10^{-5} \times 78 = 7.8 \times 10^{-4} \text{ g}$
- d. 2.03 x 10⁻³ moles of uranium dioxide, UO₂
 Answer
 M_r [UO₂] = 270 g mol⁻¹
 Mass of 2.03 x 10⁻³ moles of uranium dioxide = number of moles x M_r = 2.03 x 10⁻³ x 270 = 0.55 g
- e. 1.12 moles of sulphuric acid, H₂SO₄
 Answer
 M_r [H₂SO₄] = 98 g mol⁻¹
 Mass of 1.12 moles of sulfuric acid = number of moles x M_r = 1.12 x 98 = 109.76 g
- f. 3 x 10⁻⁴ moles of calcium carbonate, CaCO₃
 Answer
 M_r [CaCO₃] = 100 g mol⁻¹
 Mass of 3 x 10⁻⁴ moles of calcium carbonate= number of moles x M_r = 3 x 10⁻⁴ x 100 = 0.03 g
- g. 1.2 moles of ethane, C_2H_4 Answer $M_r [C_2H_4 = 28 \text{ g mol}^{-1}$ Mass of 1.2 moles of ethane = number of moles x M_r = 1.2 x 28 = **33.6 g**
- h. 0.5 moles ethanoic acid, CH₃COOH Answer Mr [CH₃COOH] = 60 g mol⁻¹

Mass of 0.5 moles ethanoic acid = number of moles x M_r =0.5 x 60 = **30 g**

- 1.25 x 10⁻³ moles sodium hydroxide, NaOH Answer M_r [NaOH] = 40 g mol⁻¹ Mass of 1.25 x 10⁻³ moles of sodium hydroxide = number of moles x M_r = 1.2 x 10⁻³ x 40 = 0.48 g
- j. 0.025 moles potassium dichromate, K₂Cr₂O₇ Answer M_r [K₂Cr₂O₇] = 294 g mol⁻¹ Mass of 0.025 moles of potassium dichromate = number of moles x M_r = 0.025 x 294 = **7.35 g**