Mass, Moles \& Number

Mass, Moles \& Number of Particles

The mole links the mass of a substance to the number of formula units (particles atoms, molecules) it contains. The mass of one mole of an element or compound is referred to as its molar mass, which is its relative atomic mass (A_{r}) or relative formula mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ in grams.

$$
\text { Molar Mass }\left(\mathrm{M}_{\mathrm{r}}\right)=\text { Relative Formula Mass (RFM) in grams }
$$

If you have m grams of a substance which has a molar mass of M_{r}, then the amount of a substance in moles, n, is given by:

$$
\begin{aligned}
& \text { Molar Mass }\left(M_{r}\right)=\text { Mass }(m) / \text { Number of Moles }(n) \\
& \text { Number of Moles }(n)=\text { Mass }(m) / \text { Molar Mass }\left(M_{r}\right) \\
& \text { Number of Particles }=\text { Number of Moles }(n) \times 6.02 \times 10^{23}
\end{aligned}
$$

If you know the values of any two of n, m or M_{r}, then you can calculate the third using one of the equations above.

Chemistry Calculating Frame for Moles, Mass and Number of Particles of Atoms \& Molecules

The following simple calculating frame can be used to determine mass, number of moles, the number of particles and volume for elements and chemical compounds.

	Symbols	Equations	Given information	Calculated information
Chemical Formula				
Relative Formula Mass Mass	$\mathrm{X}_{\mathrm{a}} \mathrm{Y}_{\mathrm{b}} \mathrm{Z}_{\mathrm{c}}$			
Number of Particles Number of Moles	m		$\mathrm{n} \times \mathrm{M}_{\mathrm{r}}$	

Step 1: Construct a table based on the one above.

Step 2: Insert all given/known information in column 3.
Note: M_{r} can be determined using A_{r} values from the Periodic Table.

Step 3: Identify which parameter(s) that need to be calculated in column 3 using a question mark.

Step 4: Using the equations in column 2 and the information in column 3, calculate the unknown values and insert in column 4.

Example 1: How many moles of sodium hydrogen carbonatite $\left(\mathrm{NaHCO}_{3}\right)$ are present in 12 g of NaHCO_{3} ?

Data from periodic table: $\mathrm{A}_{\mathrm{r}}[\mathrm{Na}]=23 ; \mathrm{A}_{\mathrm{r}}[\mathrm{H}]=1 ; \mathrm{A}_{\mathrm{r}}[\mathrm{O}]=16$

	Symbols	Equations	Given data	Calculated values
Formula				
Relative Formula Mass Mass (g)	NaHCO_{3}			
Number of Particles Number of Moles	m	$\mathrm{n} \times \mathrm{M}_{\mathrm{r}}$	12	
Volume (litre)	n	$\mathrm{n} \times 6.02 \times 10^{23}$		

Answer: 0.12 moles

Example 2: What is the mass of 0.25 moles of nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$?

Answer:

Data from periodic table: $\mathrm{A}_{\mathrm{r}}[\mathrm{N}]=14 ; \mathrm{A}_{\mathrm{r}}[\mathrm{O}]=16$

Relative Formula Mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of $\mathrm{NO}_{2}=14+(16 \times 2)=46$

	Symbols	Equations	Given information	Calculated information
Formula Relative Formula Mass Mass	NO_{2}			46
Number of Particles Number of Moles	M		$\mathrm{n} \times \mathrm{M}_{\mathrm{r}}$	$\boldsymbol{?}$
	n	$\mathrm{n} \times 6.02 \times 10^{23}$	$0.25 \times 46=\mathbf{1 1 . 5}$	

Answer: 11.5 g

Example 3: How many formula units are present in 1.25×10^{-3} moles of aluminium sulfate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?

Data from periodic table: $\mathrm{A}_{\mathrm{r}}[\mathrm{Al}]=27 ; \mathrm{A}_{r}[\mathrm{~S}]=32 ; \mathrm{A}_{\mathrm{r}}[\mathrm{O}]=16$
Relative Formula Mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=(27 \times 2)+(32 \times 3)+(16 \times 12)=342$

	Symbols	Equations	Given information	Calculated information
Formula Relative Formula Mass	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$			
Mass	M			
Number of Particles (formula units)	M	$\mathrm{n} \times \mathrm{M}_{\mathrm{r}}$		

Example 4: How many formula units of calcium chloride $\left(\mathrm{CaCl}_{2}\right)$ are present in 11 g of CaCl_{2} ?

	Symbols	Equations	Given information	Calculated information
Formula Relative Formula Mass	CaCl_{2}			111
Mass	M_{r}			
Number of Particles (formula units) Number of Moles	M	$\mathrm{n} \times \mathrm{M}_{\mathrm{r}}$	11	$0.1 \times 6.02 \times 10^{23}$ $=6.02 \times 10^{22}$
	N	$\mathrm{n} \times 6.02 \times 10^{23}$	$?$	$11 / 111=0.1$

Relative Formula Mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of calcium chloride $\left(\mathrm{CaCl}_{2}\right)=40+(35.5 \times 2)=111$

Number of moles $(\mathrm{n})=$ mass $/$ RFM $=11 / 111=0.1$

Number of Formula Units $=$ Number of Moles $(n) \times 6.02 \times 10^{23}$

$$
\begin{aligned}
& =0.1 \times 6.02 \times 10^{23} \\
& =6.02 \times 10^{22}
\end{aligned}
$$

Relative Formula Mass $\left(\mathrm{M}_{\mathrm{r}}\right)$ of calcium chloride $\left(\mathrm{CaCl}_{2}\right)=40+(35.5 \times 2)=111$

Number of moles (n) = mass / RFM

$$
=11 / 111=0.1
$$

Number of Formula Units $=$ Number of Moles $(n) \times 6.02 \times 10^{23}$

$$
=0.1 \times 6.02 \times 10^{23}=6.02 \times 10^{22}
$$

$?$ Practice Problems

1. How many moles of substance are present in the following?
a. $\quad 5.30 \mathrm{~g}$ of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$
b. $\quad 0.35 \mathrm{~g}$ of zinc nitrate, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
c. $\quad 0.008 \mathrm{~g}$ of sodium hydroxide, NaOH
d. $\quad 1.25 \mathrm{~g}$ of calcium carbonate, CaCO_{3}
e. 3.5 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$
f. 12 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
g. 1 g of uranium dioxide, UO_{2}
h. $\quad 0.3 \mathrm{~g}$ aluminium sulphate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
i. $\quad 1.2 \mathrm{~g}$ iron (III) oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$
j. $\quad 3.4 \mathrm{~g}$ sulphur trioxide, SO_{3}
2. How many formula units are present in the following?
a. $\quad 0.25$ moles of Cl_{2}
b. 5 moles of CO_{2}
c. 10 g of CaCO_{3}
d. 2.45×10^{-3} moles of NH_{3}
e. $\quad 0.34 \mathrm{~kg}$ of $\mathrm{Fe}_{3} \mathrm{O}_{4}$
f. 2.56 moles of $\mathrm{C}_{6} \mathrm{H}_{6}$
g. $\quad 1 \times 10^{-6} \mathrm{~g}$ of Au
h. $\quad 0.12$ moles of CuSO_{4}
i. 1 tonne of N_{2}
j. 4.45×10^{-6} moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
3. Determine the mass of the following:
a. 2 moles of carbon dioxide, CO_{2}
b. 0.01 moles of nitrogen dioxide, NO_{2}
c. $1 \times 10-5$ moles of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$
d. $2.03 \times 10-3$ moles of uranium dioxide, UO_{2}
e. 1.12 moles of sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$
f. 3×10^{-4} moles of calcium carbonate, CaCO_{3}
g. 1.2 moles of ethane, $\mathrm{C}_{2} \mathrm{H}_{4}$
h. 0.5 moles ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$
i. $1.25 \times 10-3$ moles sodium hydroxide, NaOH
j. 0.025 moles potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Answers are given on the next page.

? Practice Problem Answers

1. How many moles of substance are present in the following?

Number of Moles $=$ Mass $/ M_{r}$
a. $\quad 5.30 \mathrm{~g}$ of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{Na}\left(\mathrm{CO}_{3}\right)_{2}\right]=106 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 5.3 g of sodium carbonate $=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=5.3 / 106=\mathbf{0 . 0 5}$
b. 0.35 g of zinc nitrate, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$

Answer
$\mathrm{Mr}\left[\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\right]=189 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 0.35 g of zinc nitrate $=$ mass $/ \mathrm{M}_{\mathrm{r}}=0.35 / 189=\mathbf{1 . 8 5} \mathbf{x 1 0} \mathbf{1 0}^{\mathbf{- 3}}$
c. 0.008 g of sodium hydroxide, NaOH

Answer
$\mathrm{M}_{\mathrm{r}}[\mathrm{NaOH}]=40 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 0.008 g of sodium hydroxide $=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=0.008 / 40=\mathbf{2} \times \mathbf{1 0}^{-4}$
d. 1.25 g of calcium carbonate, CaCO_{3}

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{CaCO}_{3}\right]=100 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 1.25 g of calcium carbonate $=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=1.25 / 100=\mathbf{0 . 0 1 2 5}$
e. 3.5 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]=78 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles of benzene in $3.5 \mathrm{~g}=$ mass $/ \mathrm{M}_{\mathrm{r}}=3.5 / 78=\mathbf{0 . 0 4 5}$
f. 12 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]=180 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 12 g of glucose $=$ mass $/ \mathrm{M}_{\mathrm{r}}=12 / 180=\mathbf{0 . 0 6 7}$
g. 1 g of uranium dioxide, UO_{2}

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{UO}_{2}\right]=270 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 1 g of uranium dioxide $=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=1 / 270=\mathbf{3 . 7} \times \mathbf{1 0}^{-\mathbf{3}}$
h. 0.3 g aluminium sulphate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3]}=342 \mathrm{~g} \mathrm{~mol}^{-1}\right.$
Number of moles in 0.3 g aluminium sulphate $=$ mass $/ \mathrm{M}_{\mathrm{r}}=0.3 / 342=\mathbf{8 . 7 7} \times \mathbf{1 0}^{-\mathbf{4}}$
i. $\quad 1.2 \mathrm{~g}$ iron (III) oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]=160 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 1.2 g iron (III) oxide $=$ mass $/ \mathrm{M}_{\mathrm{r}}=1.2 / 160=\mathbf{7 . 5} \mathbf{\times 1 0} \mathbf{1 0}^{-\mathbf{3}}$
j. $\quad 3.4 \mathrm{~g}$ sulphur trioxide, SO_{3}

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{SO}_{3}\right]=80 \mathrm{~g} \mathrm{~mol}^{-1}$
Number of moles in 3.4 g sulphur trioxide, $\mathrm{SO}_{3}=$ mass $/ \mathrm{M}_{\mathrm{r}}=3.4 / 80=\mathbf{0 . 0 4 2 5}$
2. How many formula units are present in the following?

Number of formula units $=$ Number of moles $\times 6.02 \times 10^{23}$
a. 0.25 moles of Cl_{2}

Answer
Number of molecules of Cl_{2} in 0.25 moles $=0.25 \times 6.02 \times 10^{23}=\mathbf{1 . 5 1} \times \mathbf{1 0}^{\mathbf{2 3}}$
b. 5 moles of CO_{2}

Answer
Number of molecules of CO_{2} in 5 moles $=5 \times 6.02 \times 10^{23}=\mathbf{3 . 0 1} \mathbf{x 1 0} \mathbf{1 0}^{\mathbf{2 4}}$
c. 10 g of CaCO_{3}

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{CaCO}_{3}\right]=100$
Number of moles in 10 g of $\mathrm{CaCO}_{3}=$ mass $/ \mathrm{Mr}=10 / 100=0.1$
Number of formula units in 10 g of $\mathrm{CaCO}_{3}=0.1 \times 6.02 \times 10^{23}=\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 2}}$
d. 2.45×10^{-3} moles of NH_{3}

Answer
Number of formula units (molecules) of NH_{3} in 2.45×10^{-3} moles $=2.45 \times 10^{-3} \times 6.02 \times 10^{23}=\mathbf{1 . 4 8} \mathbf{x 1 0} \mathbf{1 0}^{\mathbf{2 1}}$
e. 0.34 kg of $\mathrm{Fe}_{3} \mathrm{O}_{4}$

Answer
$\mathrm{Mr}\left[\mathrm{Fe}_{3} \mathrm{O}_{4}\right]=232$
Number of moles of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in $340 \mathrm{~g}(0.34 \mathrm{~kg})=\mathrm{mass} / \mathrm{M}_{\mathrm{r}}=340 / 232=1.47$
Number of formula units in 0.24 kg of $\mathrm{Fe}_{3} \mathrm{O}_{4}=1.47 \times 6.02 \times 10^{23}=\mathbf{8 . 8 5} \mathbf{\times 1 0} \mathbf{1 0}^{\mathbf{2 3}}$
f. 2.56 moles of $\mathrm{C}_{6} \mathrm{H}_{6}$

Answer
Number of particles (molecules) in 2.56 moles of $\mathrm{C}_{6} \mathrm{H}_{6}=2.56 \times 6.02 \times 10^{23}=\mathbf{1 . 5 4} \mathbf{\times 1 0 2 4}$
g. $1 \times 10^{-6} \mathrm{~g}$ of Au

Answer
Number of moles of Au in $1 \times 10^{-6} \mathrm{~g}=1 \times 10^{-6} / 197=5.08 \times 10^{-9}$
Number of atoms of Au in $1 \times 10^{-6} \mathrm{~g}=5.08 \times 10^{-9} \times 6.02 \times 10^{23}=\mathbf{3 . 0 6} \mathbf{x 1 0 ^ { 1 5 }}$
h. 0.12 moles of CuSO_{4}

Answer
Number of formula units of CuSO_{4} in 0.12 moles $=0.12 \times 6.02 \times 10^{23}=\mathbf{7 . 2 2} \mathbf{~} \mathbf{1 0}^{\mathbf{2 2}}$
i. 1 tonne of N_{2}

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{N}_{2}\right]=28$

Number of moles of N_{2} in $1000 \mathrm{~g}(1$ tonne $)=1000 / 28=35.7$
Number of formula units in 1 tonne $N_{2}=35.7 \times 6.02 \times 10^{23}=2.15 \times 10^{25}$
j. $\quad 4.45 \times 10^{-6}$ moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Answer
Number of formula units in 4.45×10^{-6} moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}=4.45 \times 10^{-6} \times 6.02 \times 10^{23}=\mathbf{2 . 6 8} \mathbf{~} \mathbf{1 0}^{18}$
3. Determine the mass of the following:

Mass $=$ Number of Moles $\times \mathrm{M}_{\mathrm{r}}$
a. 2 moles of carbon dioxide, CO_{2}

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{CO}_{2}\right]=44 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 2 moles of carbon dioxide $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=2 \times 44=\mathbf{8 8} \mathbf{g}$
b. 0.01 moles of nitrogen dioxide, NO_{2}

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{NO}_{2}\right]=48 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 0.01 moles of nitrogen dioxide $=$ number of moles $\times M_{r}=0.01 \times 46=\mathbf{0 . 4 6} \mathbf{g}$
c. 1×10^{-5} moles of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{C}_{6} \mathrm{H}_{6}=78 \mathrm{~g} \mathrm{~mol}^{-1}\right.$
Mass of 1×10^{-5} moles of benzene $=$ number of moles $\times M_{r}=1 \times 10^{-5} \times 78=\mathbf{7 . 8} \mathbf{~} \mathbf{1 0 ^ { - 4 }} \mathbf{g}$
d. 2.03×10^{-3} moles of uranium dioxide, UO_{2}

Answer
$\mathrm{Mr}_{\mathrm{r}}\left[\mathrm{UO}_{2}\right]=270 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 2.03×10^{-3} moles of uranium dioxide $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=2.03 \times 10^{-3} \times 270=\mathbf{0 . 5 5} \mathbf{g}$
e. 1.12 moles of sulphuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=98 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 1.12 moles of sulfuric acid = number of moles $\times \mathrm{M}_{\mathrm{r}}=1.12 \times 98=109.76 \mathrm{~g}$
f. 3×10^{-4} moles of calcium carbonate, CaCO_{3}

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{CaCO}_{3}\right]=100 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 3×10^{-4} moles of calcium carbonate $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=3 \times 10^{-4} \times 100=\mathbf{0 . 0 3} \mathbf{g}$
g. 1.2 moles of ethane, $\mathrm{C}_{2} \mathrm{H}_{4}$

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{C}_{2} \mathrm{H}_{4}=28 \mathrm{~g} \mathrm{~mol}^{-1}\right.$
Mass of 1.2 moles of ethane $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=1.2 \times 28=33.6 \mathbf{g}$
h. 0.5 moles ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$

Answer
$\mathrm{Mr}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=60 \mathrm{~g} \mathrm{~mol}^{-1}$

Mass of 0.5 moles ethanoic acid $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=0.5 \times 60=\mathbf{3 0} \mathbf{g}$
i. $\quad 1.25 \times 10^{-3}$ moles sodium hydroxide, NaOH

Answer
$\mathrm{M}_{\mathrm{r}}[\mathrm{NaOH}]=40 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 1.25×10^{-3} moles of sodium hydroxide $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=1.2 \times 10^{-3} \times 40=\mathbf{0 . 4 8} \mathbf{g}$
j. $\quad 0.025$ moles potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Answer
$\mathrm{M}_{\mathrm{r}}\left[\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right]=294 \mathrm{~g} \mathrm{~mol}^{-1}$
Mass of 0.025 moles of potassium dichromate $=$ number of moles $\times \mathrm{M}_{\mathrm{r}}=0.025 \times 294=7.35 \mathbf{g}$

