GAS LAWS

VISUAL CHEM CARDS

Gas Laws

Units of Pressure

1 atm
$=760 \mathrm{mmHg}$
$=1.013 \times 10^{5} \mathrm{~Pa}$
$=101.3 \mathrm{kPa}$
$=1.013 \mathrm{bar}$

Units of Volume
$1 \mathrm{~m}^{3}$
$=10^{3} \mathrm{dm}^{3}$
$=10^{3} \mathrm{~L}$
$=10^{6} \mathrm{~cm}^{3}$
$=10^{6} \mathrm{~mL}$
$=1.013 \mathrm{bar}$

Boyles Law

Pressure is inversely proportional to volume

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Gay-Lussac Law

Pressure is proportional to temperature

Charles Law
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$

Temperature Conversion
${ }^{0} \mathrm{~K}={ }^{0} \mathrm{C}+273$
All temperatures must be in Kelvin.
Absolute zero $=0^{\circ} \mathrm{K}$ or $-273^{\circ} \mathrm{C}$

Avogadro's Law

Volume is proportional to number of moles

$$
\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}
$$

Combined Gas Law
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$

Gas Laws

Molar Volume (V_{m})-volume occupied

 by one mole of gas at a given temperature and pressure.At Standard Temperature (273K) \& Pressure (1 atm), $\mathbf{V}_{\mathrm{m}}=\mathbf{2 4 , 0 0 0} \mathrm{cm}^{\mathbf{3}}\left(\mathbf{2 4} \mathrm{dm}^{-3}\right.$)

Ideal Gas Equation

The value of the gas constant ' R ' depends on the units used for pressure, volume and temperature.

- $\quad R=0.0821$ litre $\cdot \mathrm{atm} / \mathrm{mol} \cdot \mathrm{K}$
- $R=8.3145 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
- $\quad R=8.2057 \mathrm{~m}^{3} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
- $R=62.3637 \mathrm{~L} \cdot$ Torr $/ \mathrm{mol} \cdot \mathrm{K}$ or L•mmHg/mol $\cdot \mathrm{K}$

