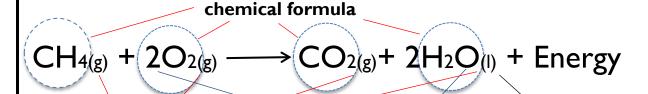
CHEMICAL EQUATIONS

VISUAL CHEM CARDS

Nigel Freestone

The Anatomy of Chemical Equations

Chemical reactions occur everywhere.


Atoms of the **reactants** are rearranged to form the **products**.

Reactant — Products

Chemical **reactions** normally occur because the products have less energy (more stable) than the reactants.

Chemical reactions can be represented in several ways.

Methane combusts in air to form carbon dioxide, water and lots of energy.

states of matter

reaction coefficients

depending on the temperature H₂O can be a liquid (l) or a gas (g)

Number of Atoms

Reactants vs products

1C 1C 4H 4H 4O 4O

Since they are the same the reaction is 'balanced'.

Matter is neither created nor destroyed, the atoms are simply rearranged by the breaking of bonds and the formation of new ones.

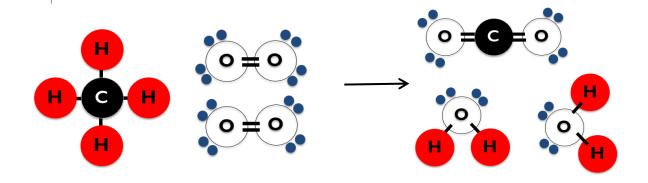
Chemical Equations

$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(l)} + Energy$$

Mass Balance

	CH _{4(g)}	+	2O _{2 (g)}	CO _{2 (g)}	+	2H ₂ O (I)
Reaction Cofficients	1		2	1		2
M _r	16		32	44		18
Mass Balance	16	80	64	44	80	36

Stoichiometry - the quantitative relationships or ratios between two or more substances undergoing chemical change (chemical reaction).


The balanced equation tells us that:

- 1 molecule of CH₄ reacts with 2 molecules of O₂ to form 1 molecule of CO₂ and 2 molecules of H₂O
- 1 mole of CH₄ reacts with 2 moles of O₂ to form 1 mole of CO₂ and 2 moles of H₂O
- 16 g of CH₄ reactsts with 64 g of O₂ to form 44 g of CO₂ and 36 g of H₂O
- 1 g of CH₄ reacts with 4 (64/16) g of O₂ to form 2.75 (44/16) g of CO₂ and 2.25 (36/16) g of H₂O

Chemical Equations

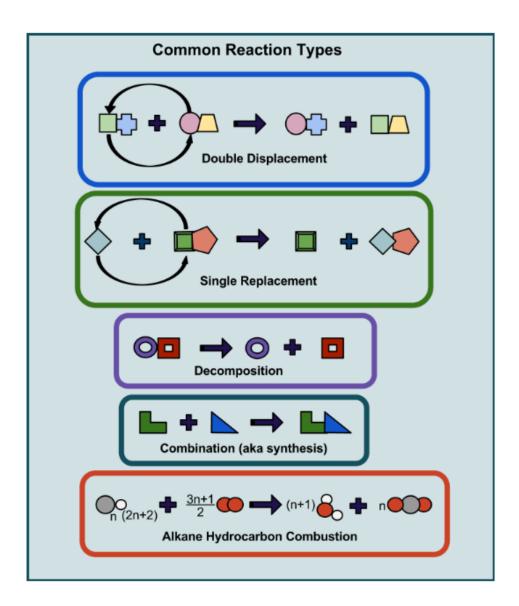
Methane + Oxygen
→ Carbon Dioxide + Water

$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(l)} + Energy$$

Reactants atoms are rearranged to form products.

Reactant bonds are broken – bonds are formed to form products.

4 C-H bonds and 2 O=O bonds are broken


Consumes energy (Endothermic)

2C=O and 4O-H bonds are formed

Releases energy (Exothermic)

Energy of Reaction = Energy Consumed - Energy Released

Chemical Reaction Types

Reaction Type	Model	Example				
Combination	A + B> C	3Ca(s) + N ₂ (g)> Ca ₃ N ₂				
Decomposition	A> B + C	2H ₂ O ₂ (aq)> 2H ₂ O(I) + O ₂ (g)				
Single Replacement	A + BC> B + AC A + BC> C + BA	Cu(s) + 2AgNO ₃ > 2Ag + Cu(NO ₃) ₂ Cl ₂ (g) + 2NaBr(aq)> Br ₂ (I) + 2NaCl(aq)				
Double Replacement	AB + CD> AD + CB	Pb(NO ₃) ₂ (aq) + 2KI(aq) -> PbI ₂ (s) + 2KNO ₃ (aq) HCI(aq) + KOH(aq)> KCI(aq) + H ₂ O(aq)				
Combustion	C _X H _y +O ₂ > CO ₂ + H ₂ 0	CH ₄ (g) + 2O ₂ (g)> CO ₂ (g) + 2H ₂ O(I)				