CHEMICAL FORMULA

VISUAL CHEM CARDS

Molecular Formula

A **molecular formula** consists of the chemical symbols for the constituent elements followed by numeric subscripts describing the number of atoms of each element present in the **molecule**.

Molecular Formula

$X_a Y_b Z_c$

$X_a(Y_bZ_c)_n = X_aY_{(b \times n)}Z_{(c \times n)}$

X, Y and Z are chemical symbols and the subscripts (a, b, c) – gives the number of atoms of each element in a molecule. If no subscript, then assume "1".

	Number of types of atoms	Number of each atom type	Total number of atoms
$X_a Y_b Z_c$	3 types: X, Y and Z	a atoms of X b atoms of Y c atoms of Z	a + b + c
NO ₂	2 types: N and O	1 atom of N 2 atoms of O	1 + 2 = 3
MgCO ₃	3 types: Mg, C and O	1 atom of Mg 1 atom of C 3 atoms of O	1 + 1 + 3 = 5
X _a (Y _b Z _c) _n	3 types: X, Y and Z	a atoms of X b x n atoms of Y c x n atoms of Z	a + nb + nc
Al ₂ (SO ₄) ₃	3 types: Al, S and O	2 atoms of Al 3 atoms of S 12 atoms of O	2 + 3 + 12 = 17
K₄Pt(CN) ₆	4 types: K, Pt, C and N	4 atoms of K 1 atom of Pt 6 atoms of C 6 atoms of N	4 + 1 + 6 + 6 = 17

The empirical **formula** represents the simplest whole-integer ratio of atoms in a compound.

Name of compound	Empirical formula	Molecular formula	
Hydrogen peroxide	HO	H ₂ O ₂	
Water	H ₂ O	H ₂ O	
Glucose	CH ₂ O	C ₆ H ₁₂ O ₆	
Oxalic acid	HCO ₂	H ₂ C ₂ O ₄	
Ethanol	C ₂ H ₆ O	C ₂ H ₆ O	
Ethane	CH ₃	C ₂ H ₆	
Ethylene	CH ₂	C ₂ H ₄	
Caffeine	C ₄ H ₅ N ₂ O	C ₈ H ₁₀ N ₄ O ₂	

Empirical Formula from Molecular Formula, X_aY_bZ_c

Step 1: Write down the subscripts, ie a, b, c;

Step 2: Identify the largest number that divides into a, b and c;

Step 3: Divide all subscripts by the number identified in step 2;

Step 4: Write down the empirical formula.

Example: What is the empirical formula of $C_6H_{12}O_6$?

Step 1	Write down chemical formula	6, 12, 6
	subscripts	
Step 2	Identify the largest common	6
	factor	
Step 3	Divide subscripts by the largest	C _{6/6} H _{12/6} NO _{6/6}
	common factor	
Step 4	Write down the empirical	Empirical Formula: CH₂O
	formula	

Example: What is the empirical formula of C₈H₁₀N₄O₂?

Step 1	Write down chemical formula	8, 10, 4, 2
	subscripts	
Step 2	Identify the largest common	2
	factor	
Step 3	Divide subscripts by the largest	C _{8/2} H _{10/2} N _{4/2} O _{2/2}
	common factor	
Step 4	Write down the empirical	Empirical Formula: C₄ H₅
	formula	N ₂ O

Empirical Formula from % Composition

To calculate empirical formula from percentage compositions of a compound use the calculating frame given below:

Empirical Formula from Percentage Composition Calculating Frame

Step 1: Write the names or symbols of the elements;

Step 2: For each element give its % composition;

Step 3: Using the Periodic Table find the A_r value for each element;

Step 4: Divide the % value for each element by its A_r;

Step 5: Divide throughout by the smallest value;

Step 6: Write down the empirical formula.

The action at Step 5 usually gives you the simplest whole number ratio straightaway. Sometimes it does not, so you might get 1 and 1.5. In this example, you would multiply both numbers by 2, giving 2 and 3 (instead of rounding 1.5 up to 2).

Step 1		Element X	Element Y	Element Z
Step 2	% composition	Х	у	Z
Step 3	Relative atomic mass, A _r	A _r [X]	A _r [Y]	A _r [Z]
Step 4	% composition/A _r x 100	x/A _r [X] x 100	y/A _r [Y] x 100	z/A _r [Z] x 100
Step 5	Divide by smallest	Step 4 answer/	Step 4 answer/	Step 4 answer/
	number from Step 4	Smallest no. Step 4	Smallest no. Step 4	Smallest no. Step 4
		=	=	=
		а	b	С
Step 6	Empirical Formula		X _a YbZ _c	

Empirical Formula from Elemental Masses (XYZ)

If you are given the elemental composition of an unknown substance in grams, you will need to proceed according to the following instructions.

Example: Find the empirical formula of an unknown substance made from p grams of element X, q grams of element Y and r grams of element Z.

Step 1: Write the names or symbols of the elements;

Step 2: Determine total mass of unknown substance, i.e. p + q + r grams

Step 3: For each element calculate its % composition, i.e. $p/(p + q + r) \times 100$

Step 4: Using the Periodic Table find the A_r value for each element;

Step 5: Divide the % value for each element calculated in Step 3 by its A_r;

Step 6: Divide throughout by the smallest value calculated in Step 5;

Step 7: Write down the empirical formula.

Step 1		Х	Y	Z	Total
Step 2	Mass	n	р	q	x + y + z
Step 3	% Composition	p/(p + q + r)	q/(p + q + r)	r/(p + q + r)	
Step 4	Ar	A _r [X]	A _r [Y]	A _r [Z]	
Step 5	Divide step 2 value for each element by its A _r	Step 2 value/ A _r [X]	Step 2 value/ A _r [Y]	Step 2 value/ A _r [Z]	
Step 6	Divide Step 4 answer by the lowest step 4 value	Step 4 value/Lowest Step 4 value = a	Step 4 value/Lowest Step 4 value = b	Step 4 value/Lowest Step 4 value = c	
Step 7	Empirical Formula	$X_a Y_b Z_c$			

Molecular & Structural Formula

