CHEMICAL EQUILIBRIUM

VISUAL CHEM CARDS

	Chemical Equilibrium				
	Some chemical reactions are reversible, ie products can react together to produce the original reactants:				
	$aA + bB \rightleftharpoons cC + dD$				
	Left (L) Right (R)				
	Forward reaction \longrightarrow				
	Backward reaction				
Reversible reaction mixtures contain both reactants and products.					
Position of equilibrium is given by K – an equilibrium. Under a given set of temperature and pressure conditions, K is a constant ,					
	$K = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$ reaction coefficients				
	If K is large, equilibrium lies to the \mathbf{R}_{-} ie high proportion of products.				
	If K is small, equilibrium lies to the L– ie high proportion of reactants.				

Le Chatelier's principle if the reaction conditions of a system in dynamic equilibrium are changed, the position of equilibrium will shift to counteract the changes in order to re-establish equilibrium.

So, any changes made to reaction conditions will cause the equilibrium to move in a direction (left or right) to offset the change.

$aA + bB \rightleftharpoons cC + dD$ Left Right

Changing Concentration

Increase [A] or [B]	Equilibrium shifts R
Decrease [A] or [B]	Equilibrium shifts L
Increase [C] or [D]	Equilibrium shifts L
Decrease [C] or [D]	Equilibrium shifts R

Le Chatelier's principle if the reaction conditions of a system in dynamic equilibrium are changed, the position of equilibrium will shift to counteract the changes in order to re-establish equilibrium.

So, any changes made to reaction conditions will cause the equilibrium to move in a direction (left or right) to offset the change.

Changing Pressure

Changing the pressure will have no impact on reactions that involve only solids or liquids.

Pressure only has an effect when the number of gaseous reactant and product molecules differs.

reactants

1 + 3 = 4 molecules

products

2 molecules

Increase Pressure Equilibrium shifts R Decrease Pressure Equilibrium shifts L

Le Chatelier's principle if the reaction conditions of a system in dynamic equilibrium are changed, the position of equilibrium will shift to counteract the changes in order to re-establish equilibrium.

So, any changes made to reaction conditions will cause the equilibrium to move in a direction (left or right) to offset the change.

Changing Temperature

Exothermic reactions

aA+	bB	4	cC +	- dD	+	heat
		•				

Increase Temperature	Equilibrium shifts L
Decrease Temperature	Equilibrium shifts R

Endothermic reactions

$aA + bB + heat \rightleftharpoons cC + dD$

Increase Temperature	Equilibrium shifts R
Decrease Temperature	Equilibrium shifts L

