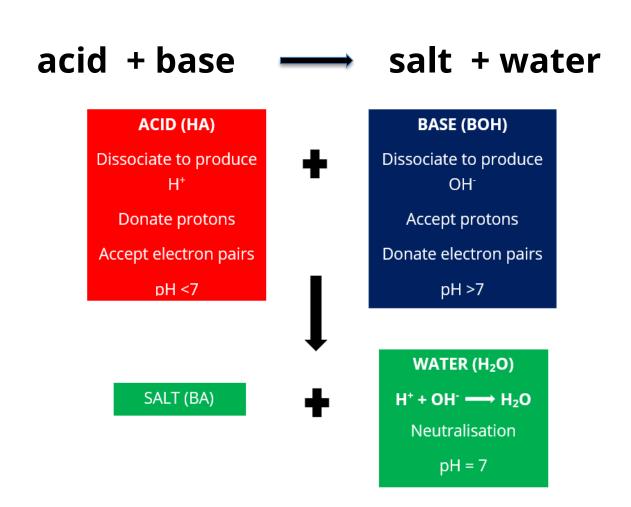
ACIDS, BASES & BUFFERS

Acid & Base Theories

Arrhenius Water Theory


Acids are substances which produce hydrogen ions in solution.

Alkalis are substances which produce hydroxide ions in solution.

NOTE: Alkalis are soluble BASES

$$HA_{(aq)} + BOH_{(aq)} \longrightarrow BA_{(aq)} + H_2O_{(l)}$$

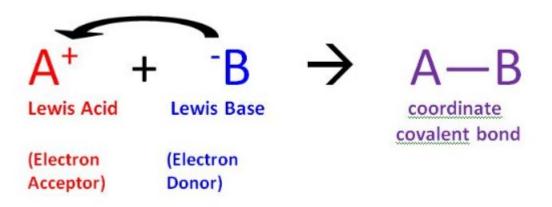
Neutralisation happens because hydrogen ions and hydroxide ions react to produce water.

Acids & Bases

Common Acids

Chemical Name	Formula	Uses	Strength
Nitric Acid	HNO₃	Explosives, fertilizer, dyes, glue	Strong
Sulfuric Acid	H ₂ SO ₄	Explosives, fertilizer, dyes, glue, batteries	Strong
Hydrochloric Acid	HCI	Metal cleaning, food preparation, ore refining, stomach acid	Strong
Phosphoric Acid	H ₃ PO ₄	Fertilizer, plastics and rubber, food preservation	Moderate
Acetic Acid	HC ₂ H ₃ O ₂	Plastics and rubber, food preservation, Vinegar	Weak
Hydrofluoric Acid	HF	Metal cleaning, glass etching	Weak
Carbonic Acid	H ₂ CO ₃	Soda water	Weak
Boric Acid	H ₃ BO ₃	Eye wash	Weak

Common Bases


Chemical Name	Formula	Common Name	Uses	Strength
Sodium hydroxide	NaOH	Lye, caustic soda	Soap, plastic, petrol refining	Strong
Potassium hydroxide	КОН	Caustic potash	Soap, cotton, electroplating	Strong
Calcium hydroxide	Ca(OH) ₂	Slaked lime	Cement	Strong
Sodium bicarbonate	NaHCO ₃	Baking soda	Cooking, antacid	Weak
Magnesium hydroxide	Mg(OH) ₂	Milk of magnesia	Antacid	Weak
Ammonium hydroxide	NH₄OH, {NH₃(aq)}	Ammonia water	Detergent, fertilizer, explosives, fibers	Weak

Acids & Base Theories

Lewis Acid-Base Theory

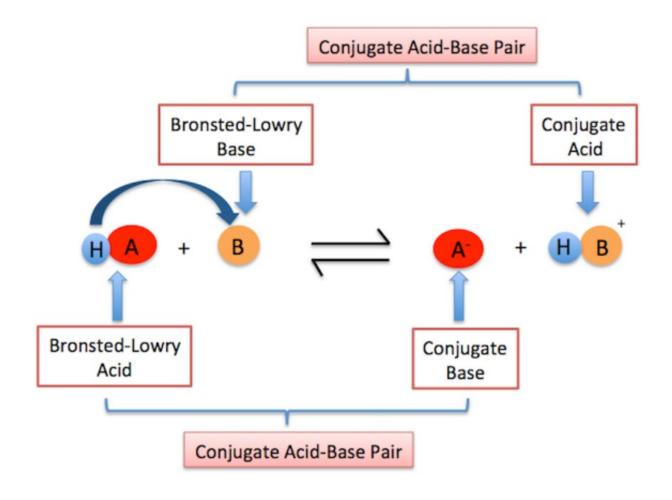
Lewis Acid: a species that accepts an electron pair (i.e., an **electrophile**) and will have vacant orbitals.

Lewis Base: a species that donates an electron pair (i.e., a **nucleophile**) and will have lone-pair electrons.

Lewis Acids are Electrophilic ie. electron attracting. Various species can act as Lewis acids.

- All cations are Lewis acids since they are able to accept electrons. (e.g., Cu^{2+} , Fe^{2+} , Fe^{3+})
- An atom, ion, or molecule with an incomplete octet of electrons can act as an Lewis acid (e.g., BF₃, AIF₃).
- Molecules where the central atom can have more than 8 valence shell electrons can be electron acceptors, and thus are classified as Lewis acids (e.g., SiBr₄, SiF₄).

Lewis Bases are Nucleophilic meaning that they "attack" a positive charge with their lone pair.


 Atoms, ions, or molecules with a lone-pair of electrons can thus be a Lewis base e.g., OH⁻, CN⁻, CH₃COO⁻, :NH₃, H₂O:, CO:

Acids & Base Theories

Bronsted-Lowry Acid-Base Theory

An **acid** is a proton (hydrogen ion) donor.

A **base** is a proton (hydrogen ion) acceptor.

Properties of Acids

Acids change the colour of litmus from blue to red.

Some Acids are highly corrosive

Acids react with active metals to evolve hydrogen gas

Acids lose their acidity when mixed with a base.

When equal amounts of acid and base are combined the process of neutralisation occurs and salt and water is formed,

Acids have a pH value of less than 7

Acids are sour in taste.

Acids react with carbonates and hydrogen carbonates to form a salt, water, and carbon dioxide gas.

Acids react with sulphites and bisulphites to form a salt, water and sulfur dioxide

Acids and metal sulphides react to form salt and hydrogen sulphide.

Acids are classified on the basis of their sources, strength, concentration, the presence of oxygen and its basicity.

The different types of acids are **organic acids**, **mineral strong acids**, **weak acids**, **concentrated acids**, **dilute acids**, **Oxy-acids**, **Hydracids**, **monobasic acids**, **dibasic acids**, **and tribasic acids**.

Properties of Bases

Bases change the colour of litmus from red to blue.

Bases have a **bitter taste**.

Bases lose their basicity when mixed with acids.

Bases react with acids to form salt and water.

Bases feel slippery or soapy.

Strong bases are highly **corrosive** in nature whereas other bases are mildly corrosive.

The **pH** value of bases ranges from 8-14.

Bases and ammonium salts produce ammonia.

Bases are classified on the basis of strength, concentration and acidity.

The different kinds of acids are strong base acid, weak base acid, concentrated base, dilute base, monoacidic base, diacidic base and triacidic base.

Reactions of Acids & Bases

eg.
$$HCI_{(aq)} + NaOH_{(aq)} \longrightarrow NaCI_{(aq)} + H_2O_{(l)}$$

$$H^+_{(aq)} + OH^-_{(aq)} \longrightarrow H_2O_{(l)}$$

eg.
$$H_2SO_{4(aq)} + Cu_{(s)} \longrightarrow CuSO_{4(aq)} + H_{2(g)}$$

eg.
$$HNO_{3(aq)} + CaCO_{3(aq)} \longrightarrow CaCO_{3(aq)} + CO_{2(g)} + H_2O_{(l)}$$

eg.
$$2HCI_{(aq)} + Na_2SO_{3(aq)} \longrightarrow 2NaCI_{(aq)} + SO_{2(g)} + H_2O_{(l)}$$

Acids & Bases

$pH = - \log [H^{+}]$

рН	[H ⁺] M	[H ⁺] M	Examples
0	1	10 ⁰	Battery acid
1	0.1	10 ⁻¹	Stomach acid
2	0.01	10 ⁻²	Lemon Juice
3	0.001	10 ⁻³	Vinegar
4	0.0001	10 ⁻⁴	Tomato juice
5	0.00001	10 ⁻⁵	Black coffee
6	0.000001	10 ⁻⁶	Saliva
7	0.0000001	10 ⁻⁷	Pure Water
8	0.0000001	10 ⁻⁸	Sea water
9	0.00000001	10 ⁻⁹	Baking soda
10	0.000000001	10 ⁻¹⁰	Bar of soap
11	0.0000000001	10 ⁻¹¹	Ammonia
12	0.00000000001	10 ⁻¹²	Household bleach
13	0.0000000000001	10 ⁻¹³	Oven cleaner
14	0.00000000000001	10 ⁻¹⁴	Sodium hydroxide

Strong Acids & Bases

Strong acids (HA) and bases (BOH) completely dissociate into their ions in water.

HA
$$\longrightarrow$$
 H⁺ + A⁻
BOH \longrightarrow B+ + OH⁻

Strong Acids	Strong Bases
HCl: hydrochloric acid	LiOH: lithium hydroxide
HNO₃: nitric acid	NaOH: sodium hydroxide
H ₂ SO ₄ : sulfuric acid	KOH: potassium hydroxide
HBr: hydrobromic acid	RbOH: rubidium hydroxide
HI: hydroiodic acid	CsOH: cesium hydroxide
HClO ₄ : perchloric acid	Ca(OH) ₂ : calcium hydroxide
	Sr(OH)₂: strontium hydroxide
	Ba(OH) ₂ : barium hydroxide

Weak Acids & Bases

Weak acids and bases partially dissociate in water.

$$HA \rightleftharpoons H^+ + A^-$$

BOH $\rightleftharpoons B^+ + OH^-$

The extent to which weak acids and bases dissociate is given by their dissociation constant value.

Acid dissociation constant,
$$K_a = \frac{[H^+[A^-]}{[HA]}$$
 Base dissociation constant, $K_b = \frac{[B^+[OH^-]}{[BOH]}$

The higher the value if K_a, K_b, the stronger the weak acid or base.

Weak Acids

Acid	Formula
Formic	НСООН
Acetic	CH₃COOH
Trichloroacetic	CCl₃COOH
Hydrofluoric	HF
Hydrocyanic	HCN
Hydrogen sulfide	H ₂ S
Water	H ₂ O

Weak Bases

Acid	Formula
Ammonia	NH ₃
Pyridine	C_5N_5N
Methylamine	CH ₃ NH ₂
Water	H ₂ O

Water Dissociation Constant (Kw)

Water partially dissociates (autoionises):

$$H_2O_{(l)} \iff H^+_{(aq)} + OH^-_{(aq)}$$

H⁺ is a proton and combines with a molecule of water to form the hydroxonium ion, H₃O⁺

$$2H_2O_{(l)} = H_3O^+_{(aq)} + OH^-_{(aq)}$$

Water behaves as both a weak acid and a weak base.

The Water Dissociation Constant (KW) is just another acid dissociation constant.

This gives you:

$$K_W = [H^+] [OH^-]$$

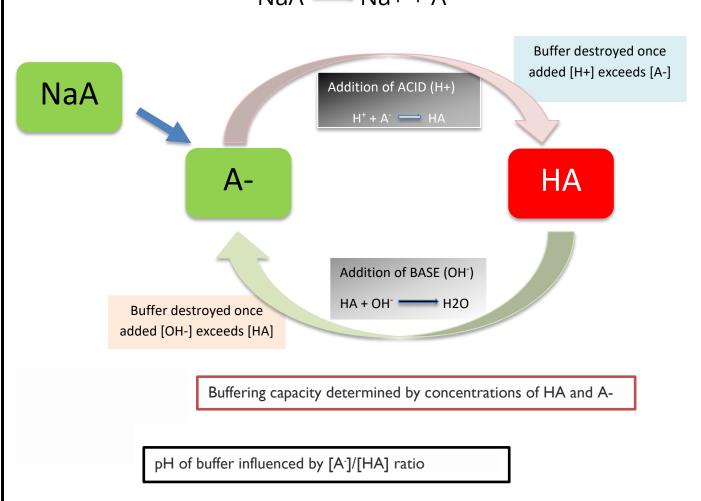
Kw always equals mol²dm⁻⁶

In pure water, $[H^+] = [OH^-]$. Under normal temperature and pressure, $[H^+] = 1 \times 10^{-7} \text{ M}$.

pH of pure water =
$$-\log_{10}[1 \times 10^{-7}] = 7$$

Buffers

A buffer solution is one which resists changes in pH when small quantities of an acid or an alkali are added to it.


Acid Buffer: mixtures of a weak acid (HA) and its conjugate base (A-)

HA/NaA

The presence of A⁻ from the dissolution of NaA suppresses the dissociation of HA.

Buffer mixture contains 'reservoirs of HA and A-

$$HA \longrightarrow H^+ + A^ NaA \longrightarrow Na+ + A-$$

Buffers

Basic Buffer: mixtures of a weak base (BOH) and its conjugate base (B+)

BOH/BA

The presence of B+ from the dissolution of BA suppresses the dissociation of BOH.

Buffer mixture contains 'reservoirs of BOH and B+

Weak acid: $BOH \rightleftharpoons B^+ + OH^-$

Salt of weak acid: $BA \longrightarrow B^+ + A^-$

Buffer destroyed once added [H⁺] exceeds [BOH]

BA

Addition of ACID (H⁺)

 $BOH + H^+ \longrightarrow B^+ + H_2O$

B⁺

ВОН

Buffer destroyed once added [OH⁻] exceeds

[B⁺]

Addition of BASE (OH-)

 $B^+ + OH^- \longrightarrow BOH$

Buffering capacity determined by concentrations of BOH and B⁺

pH of buffer influenced by [B⁺]/[BOH] ratio

pH of Buffers

Henderson-Hasselbalch equation

Acidic Buffers

$$pH = pK_a + \frac{\log[A^-]}{[HA]}$$

Basic Buffers

$$pOH = pK_b + \frac{log[B]}{[BOH]}$$

$$pK_a = - log K_a$$

$$K_a = 10^{-pKa}$$

$$pK_b = - log K_b$$

$$K_a = 10^{-pKb}$$