Simple Step-by-Step Guides to Solving Chemistry Problems

Weak Acids & Bases

Nigel Freestone www.chemtextbook.com

Weak Acids & Bases

- Calculate pK_a from acid dissociation constant, K_a
- Calculate pK_b from base dissociation constant, K_b
- Calculate [H⁺], [OH⁻] and pH from acid dissociation constant, K_a
- Calculate [H⁺], [OH⁻] and pH from base dissociation constant, K_b

Weak acids, H_yA and weak bases, B(OH)_n partially dissociate (ionise) in water:

Weak acid: $HA_{(aq)} \rightleftharpoons A^{-}_{(aq)} + H^{+}_{(aq)}$

Weak base: $BOH_{(aq)} \rightleftharpoons B^+_{(aq)} + OH^-_{(aq)}$

The degree of dissociation is given by the acid (K_a) and the base (K_b) dissociation constants.

$$K_a = \frac{[A^-][H^+]}{[HA]}$$

$$K_b = \frac{[B^+][OH^-]}{[BOH]}$$

As the word 'constant' implies, at a given temperature, K_a and K_b . The larger the value of K_a and K_b , the stronger the acid and base, respectively. It is often convenient to express K_a and K_b as ordinary numbers

Weak acids: $pK_a = -log_{Ka}$ $K_a = 10^{-pKa}$

Weak bases: $pK_b = - log K_b$ $K_b = 10^{-pKb}$

Calculate pK_a from K_a

Essential Equation:

$$pK_a = - log(K_a)$$

Example 1: What is the pK_a of a weak acid with a K_a of 1.2×10^{-4}

Answer:

$$pK_a = -log(1.2 \times 10^{-4}) = 3.92$$

Casio Calculator Button Sequence

Calculate pKb from Kb

Essential Equation:

$$pK_b = - log(K_b)$$

Example: The Kb value for ammonia is 1.8×10^{-5} . What is the pKb of ammonia?

$$K_b = -\log(1.8 \times 10^{-5}) = 4.75$$

Casio calculator button sequence

Calculate [H⁺], [OH⁻] and pH from K_a

Essential Equations:

$$K_a = \frac{[A^-][H^+]}{[HA]}$$

$$pH = -\log[H^+]$$

Step I: Write a balanced equation for the dissociation of the weak acid, ie $HA_{(aq)} \rightleftharpoons A^{-}_{(aq)} + H^{+}_{(aq)}$

Step 2: Write an expression for K_a and rearrange to make OH^- the subject of the equation and solve.

$$K_{a} = \frac{[A^{-}][H^{+}]}{[HA]} = \frac{[H^{+}][H^{+}]}{[HA]} = \frac{[H^{+}]^{2}}{[HA]}$$

Note: from the balanced equation for the dissociation, $[A^-] = [H^+]$

Rearranging,

$$[H^+]^2 = K_a x [HA]$$

$$[H^+] = \sqrt{K_a}[HA]$$

Step3: Calculate pH and hence pOH, using:

$$pH = -log_{10} \sqrt{K_a[HA]}$$

$$pOH = 14 - pH$$

Calculate [OH-], pOH and pH from K_b

Useful equations:

$$K_b = \frac{[B^+][OH^-]}{[BOH]}$$

$$pOH = -log[OH^-]$$

$$pH = 14 - pOH$$

Step 1: Write a balanced equation for the dissociation of the weak base, ie: $BOH_{(aq)} \rightleftharpoons B^+_{(aq)} + OH^-_{(aq)}$

Step 2: Write an expression for K_b and rearrange to make OH^- the subject of the equation and solve.

$$K_b = \frac{[B^+][OH^-]}{[BOH]} = \frac{[OH^-][OH^-]}{[BOH]} = \frac{[OH^-]^2}{BOH}$$

Note: from the balanced equation for the dissociation, $[B^+] = [OH^-]$

Rearranging,

$$[OH^{-}]^{2} = K_{b} \times [BOH]$$

 $[OH^{-}] = \sqrt{K_{b}}[BOH]$

Step 3: Calculate pOH and hence pH, using:

$$pOH = -\log_{10}\sqrt{K_b[BOH]}$$

$$pH = 14 - pOH$$

Example: What is the pH of a 0.15 M solution of weak base ammonium bromide? The K_b value for ammonia is 1.8×10^{-5} .

Answer:

Step 1:
$$NH_3 \rightleftharpoons NH_4^+_{(aq)} + OH^-_{(aq)}$$

Step 2:
$$K_b = \frac{[NH_4^+][OH^-]}{[NH_4OH]} = \frac{[OH^-]^2}{[NH_4OH]}$$

Rearranging, $[OH^-] = \sqrt{K_b}[NH_4OH]$

$$[OH^{-}] = \sqrt{(1.8 \times 10^{-5} \times 0.15)} = 1.64 \times 10^{-3}$$

Step 3: Calculate pOH and hence pH, using:

$$pOH = -log_{10}(1.64 \times 10^{-3}) = 2.79$$

 $pH = 14 - 2.79 = 11.21$

? Practice Problems

- a. Find the pH of a 0.056 M propionic acid solution ($K_a = 1.4 \times 10^{-5}$).
- b. Find the pH of a 0.065 M solution of formic acid. The acid dissociation constant (K_a) for formic acid is 1.8×10^{-4} .
- c. Find the pH of a 0.15 M solution of ammonia, NH_3 . $K_b = 1.8 \times 10^{-5}$
- d. Find the pH of a 0.600 M solution of methylamine CH₃NH₂. $K_b = 4.4 \times 10^{-4}$.
- e. Calculate [OH-] for a 0.50 M solution of ammonia. $K_b = 1.8 \times 10^{-5}$.
- f. Calculate [H+] in a 0.10 M solution of formic acid. $K_a = 1.7 \times 10^{-4}$.
- g. Determine the value of Ka for acetic acid from the following data: 0.10 mole of the acid is dissolved in enough water for a total volume of 1.0 Litre. The resulting $[H^+]$ is 1.35×10^{-3} .
- h. Lactic acid, CH₃CHOCOOH, gets its name from sour milk, from which it was first isolated in 1780 (L. lactis, milk). K_a for lactic acid is 8.4 x 10⁻⁴. Find the [H⁺] in a sample of sour milk containing 0.100 M lactic acid.
- i. Many of the common organic acids got their original names from their odors and/or sources. Another case in point is Caproic acid (hexanoic acid), found in the skin secretions of goats (L. caper, goat). Caproic acid is CH₃(CH₂)₄COOH and has a structure similar to acetic acid, but with a longer carbon chain. The concentration of H⁺ in a solution prepared by dissolving 0.030 mol of caproic acid in 1.0 L of water solution was measured and found to be 6.5 x 10⁻⁴ M. Find K_a for caproic acid.
- j. Two solutions are needed in the lab, each with a volume of 10 L (to the nearest 1 Litre) and a pH equal to 11.00. How many moles of each solute would it take if one solution is to be made with NaOH (strong base) and the other with NH₃? (Kb = 1.8×10^{-5}) (approximate for NH₃)

Answers are given in the following page.

? Practice Problem Answers

```
a. pH = 3.05
```

e.
$$[OH-] = 3 \times 10^{-3}$$

f.
$$[H^+] = 4.12 \times 10^{-3}$$

h.
$$8.8 \times 10^{-3} \text{ M}$$

i.
$$1.4 \times 10^{-5}$$

j. For NaOH, 0.010 moles; for NH₃, 0.56 moles