

Weak Acids \&

 Bases

Nigel Freestone
www.chemtextbook.com

Weak Acids \& Bases

- Calculate pK_{a} from acid dissociation constant, K_{a}
- Calculate $\mathbf{p K} \mathrm{K}_{\mathrm{b}}$ from base dissociation constant, K_{b}
- Calculate $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$and pH from acid dissociation constant, K_{a}
- Calculate $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$and pH from base dissociation constant, K_{b}

Weak acids, $\mathrm{H}_{\mathrm{y}} \mathrm{A}$ and weak bases, $\mathrm{B}(\mathrm{OH})_{\mathrm{n}}$ partially dissociate (ionise) in water:
Weak acid: $\mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \mathrm{A}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}$

Weak base: $\mathrm{BOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{B}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
The degree of dissociation is given by the acid $\left(\mathrm{K}_{\mathrm{a}}\right)$ and the base $\left(\mathrm{K}_{\mathrm{b}}\right)$ dissociation constants.

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]} \\
\mathrm{K}_{\mathrm{b}} & =\frac{\left[\mathrm{B}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{BOH}]}
\end{aligned}
$$

As the word 'constant' implies, at a given temperature, K_{a} and K_{b}. The larger the value of K_{a} and K_{b}, the stronger the acid and base, respectively. It is often convenient to express K_{a} and K_{b} as ordinary numbers

Weak acids: $\quad \mathrm{pK} \mathrm{K}_{\mathrm{a}}=-\log \mathrm{Ka}_{\mathrm{a}} \quad \mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pKa}}$
Weak bases: $\quad \mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}} \quad \mathrm{K}_{\mathrm{b}}=10^{-\mathrm{pKb}}$

Calculate pK_{a} from Ka_{a}

Essential Equation:

$$
\mathrm{pK}_{\mathrm{a}}=-\log \left(\mathrm{K}_{\mathrm{a}}\right)
$$

Example I: What is the pK_{a} of a weak acid with a K_{a} of $\mathrm{I} .2 \times 10^{-4}$
Answer:

$$
\mathrm{pK}_{\mathrm{a}}=-\log \left(\mathrm{I} .2 \times 10^{-4}\right)=3.92
$$

Casio Calculator Button Sequence

Calculate $\mathbf{p K b}$ from $\mathbf{K b}$

Essential Equation:

$$
\mathrm{pK} \mathrm{~K}_{\mathrm{b}}=-\log \left(\mathrm{K}_{\mathrm{b}}\right)
$$

Example: The Kb value for ammonia is 1.8×10^{-5}. What is the pKb of ammonia?

$$
\mathrm{K}_{\mathrm{b}}=-\log \left(1.8 \times 10^{-5}\right)=4.75
$$

Casio calculator button sequence

\log (1 . .8

Calculate $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$and pH from K_{a}

Essential Equations:

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right]
\end{aligned}
$$

Step I: Write a balanced equation for the dissociation of the weak acid, ie $\mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \mathrm{A}_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}$

Step 2: Write an expression for K_{a} and rearrange to make OH^{-}the subject of the equation and solve.

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]}
$$

Note: from the balanced equation for the dissociation, $\left[\mathrm{A}^{-}\right]=\left[\mathrm{H}^{+}\right]$
Rearranging,

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]^{2} } & =\mathrm{K}_{\mathrm{a}} \mathrm{x}[\mathrm{HA}] \\
{\left[\mathrm{H}^{+}\right] } & =\sqrt{\mathrm{K}_{\mathrm{a}}}[\mathrm{HA}]
\end{aligned}
$$

Step3: Calculate pH and hence pOH , using:

$$
\begin{gathered}
\mathrm{pH}=-\log _{10} \sqrt{ } \mathrm{~K}_{\mathrm{a}}[\mathrm{HA}] \\
\mathrm{pOH}=14-\mathrm{pH}
\end{gathered}
$$

Calculate [OH^{-}], pOH and pH from K_{b}

Useful equations:

$$
\begin{aligned}
\mathrm{K}_{\mathrm{b}} & =\frac{\left[\mathrm{B}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{BOH}]} \\
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right] \\
\mathrm{pH} & =14-\mathrm{pOH}
\end{aligned}
$$

Step I: Write a balanced equation for the dissociation of the weak base, ie: $\mathrm{BOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{B}^{+}{ }_{(\mathrm{qq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$

Step 2: Write an expression for K_{b} and rearrange to make OH^{-}the subject of the equation and solve.

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{B}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{BOH}]}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{BOH}]}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{\mathrm{BOH}}
$$

Note: from the balanced equation for the dissociation, $\left[\mathrm{B}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
Rearranging,

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right]^{2} } & =\mathrm{K}_{\mathrm{b}} \mathrm{x}[\mathrm{BOH}] \\
{\left[\mathrm{OH}^{-}\right] } & =\sqrt{\mathrm{K}_{\mathrm{b}}}[\mathrm{BOH}]
\end{aligned}
$$

Step 3: Calculate pOH and hence pH , using:

$$
\begin{gathered}
\mathrm{pOH}=-\log _{10} \sqrt{ } \mathrm{~K}_{\mathrm{b}}[\mathrm{BOH}] \\
\mathrm{pH}=14-\mathrm{pOH}
\end{gathered}
$$

Example: What is the pH of a 0.15 M solution of weak base ammonium bromide? The K_{b} value for ammonia is 1.8×10^{-5}.

Answer:

Step 1: $\quad \mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}$
Step 2: $\quad \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}$
Rearranging, $\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b}}}\left[\mathrm{NH}_{4} \mathrm{OH}\right]$

$$
\left.\left[\mathrm{OH}^{-}\right]=\sqrt{\left(1.8 \times 10^{-5}\right.} \times 0.15\right)=1.64 \times 10^{-3}
$$

Step 3: Calculate pOH and hence pH , using:

$$
\begin{aligned}
& \mathrm{pOH}=-\log _{10}\left(\mathrm{I} .64 \times 10^{-3}\right)=2.79 \\
& \qquad \mathrm{pH}=14-2.79=\mathbf{1 1 . 2 1}
\end{aligned}
$$

? Practice Problems

a. Find the pH of a 0.056 M propionic acid solution $\left(\mathrm{K}_{\mathrm{a}}=1.4 \times 10^{-5}\right)$.
b. Find the pH of a 0.065 M solution of formic acid. The acid dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ for formic acid is 1.8×10^{-4}.
c. Find the pH of a 0.15 M solution of ammonia, $\mathrm{NH}_{3} . \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$
d. Find the pH of a 0.600 M solution of methylamine $\mathrm{CH}_{3} \mathrm{NH}_{2} . \mathrm{K}_{\mathrm{b}}=4.4 \times 10^{-4}$.
e. Calculate $\left[\mathrm{OH}^{-}\right]$for a 0.50 M solution of ammonia. $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$.
f. Calculate $\left[\mathrm{H}^{+}\right]$in a 0.10 M solution of formic acid. $\mathrm{K}_{\mathrm{a}}=1.7 \times 10^{-4}$.
g. Determine the value of $K a$ for acetic acid from the following data: 0.10 mole of the acid is dissolved in enough water for a total volume of 1.0 Litre. The resulting $\left[\mathrm{H}^{+}\right]$is 1.35×10^{-3}.
h. Lactic acid, $\mathrm{CH}_{3} \mathrm{CHOCOOH}$, gets its name from sour milk, from which it was first isolated in I 780 (L. lactis, milk). K_{a} for lactic acid is 8.4×10^{-4}. Find the $\left[\mathrm{H}^{+}\right]$in a sample of sour milk containing 0.100 M lactic acid.
i. Many of the common organic acids got their original names from their odors and/or sources. Another case in point is Caproic acid (hexanoic acid), found in the skin secretions of goats (L. caper, goat). Caproic acid is $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$ and has a structure similar to acetic acid, but with a longer carbon chain. The concentration of H^{+}in a solution prepared by dissolving 0.030 mol of caproic acid in I .0 L of water solution was measured and found to be 6.5×10^{-4} M . Find K_{a} for caproic acid.
j. Two solutions are needed in the lab, each with a volume of 10 L (to the nearest I Litre) and a pH equal to 1 I .00 . How many moles of each solute would it take if one solution is to be made with NaOH (strong base) and the other with NH_{3} ? $\left(\mathrm{Kb}=1.8 \times 10^{-5}\right)$ (approximate for NH_{3})

Answers are given in the following page.

? Practice Problem Answers

a. $\mathrm{pH}=3.05$
b. $\mathrm{pH}=2.47$
c. $\mathrm{pH}=11.22$
d. $\mathrm{pH}=12.2$
e. $\left[\mathrm{OH}^{-}\right]=3 \times 10^{-3}$
f. $\left[\mathrm{H}^{+}\right]=4.12 \times 10^{-3}$
g. $\quad 1.8 \times 10^{-5}$
h. $8.8 \times 10^{-3} \mathrm{M}$
i. $\quad 1.4 \times 10^{-5}$
j. For $\mathrm{NaOH}, 0.010$ moles; for $\mathrm{NH}_{3}, 0.56$ moles

