Interconverting Kc

Nigel Freestone
www.chemtextbook.com

Converting Between K_{c} and K_{p}

To convert between K_{c} to K_{p} use the following equation which is based on the relationship between molarities and gas pressures.

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

$\Delta \mathrm{n}$ is the difference in the number of moles of gases on each side of the balanced equation for the reaction.

$$
\Delta \mathrm{n}=\text { (number of moles of gaseous products }- \text { number of moles of gaseous reactants) }
$$

Converting $\mathbf{K}_{\mathbf{c}}$ to $\mathbf{K}_{\mathbf{p}}$

Step I: calculate the difference in the number of moles of gases.
Step 2: substitute $\Delta n, R$, and T into the equation and solve.

Example I: Calculate the value of K_{p} for the following reaction, at 333 K .

$$
\mathrm{PH}_{3} \mathrm{BCl}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{PH}_{3(\mathrm{~g})}+\mathrm{BCl}_{3(\mathrm{~g})} \mathrm{K}_{\mathrm{c}}=6.96 \times 10^{5} \text { at } 333 \mathrm{~K}
$$

Calculate the difference in the number of moles of gases, $\Delta \mathrm{n}$.

$$
\Delta \mathrm{n}=(2 \text { moles of gaseous products }-0 \text { moles of gaseous reactants })=2
$$

Substitute the values into the equation and calculate K_{p}.

$$
K_{p}=\left(6.96 \times 10^{-5}\right) \times(0.0821 \times 333)^{2}=0.052
$$

Note: because we do not choose to use units for K_{c} and K_{p}, we cannot cancel units for R and T. However, be careful to use the value of R consistent with the units of pressure used in the problem, and T in Kelvin.

Converting K_{p} to \mathbf{K}_{c}

Step I: Calculate the change in the number of moles of gases.
Step 2: Substitute $\Delta \mathrm{n}, \mathrm{R}$, and T into the equation and solve.

Example 2: Calculate the value of K_{c} at 373 K for the following reaction:

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NOBr}_{(\mathrm{g})} \quad \mathrm{K}_{\mathrm{p}}=2.4 \text { at } 373 \mathrm{~K}
$$

Calculate the change in the number of moles of gases, $\Delta \mathrm{n}$.

$$
\Delta \mathrm{n}=(2 \text { moles of gaseous products }-3 \text { moles of gaseous reactants })=-1
$$

Substitute the values into the equation and calculate K_{c}.

$$
\begin{gathered}
2.40=K_{c} \times(0.0821 \times 373)^{-1} \\
K_{c}=73.5
\end{gathered}
$$

Note: because we do not choose to use units for K_{c} and K_{p}, we cannot cancel units for R and T. However, be careful to use the value of R consistent with the units of pressure used in the problem, and T in Kelvin.

