Simple Step-by-Step Guides to Solving Chemistry Problems

Interconverting Kc & Kp

Nigel Freestone www.chemtextbook.com

Converting Between Kc and Kp

To convert between K_c to K_p use the following equation which is based on the relationship between molarities and gas pressures.

$$\mathbf{K}_{p} = \mathbf{K}_{c}(\mathbf{RT})^{\Delta n}$$

 Δ n is the difference in the number of **moles of gases** on each side of the balanced equation for the reaction.

 $\Delta n = \text{(number of moles of gaseous products - number of moles of gaseous reactants)}$

Converting K_c to K_p

Step 1: calculate the difference in the number of moles of gases.

Step 2: substitute Δn , R, and T into the equation and solve.

Example 1: Calculate the value of K_p for the following reaction, at 333 K.

$$PH_3BCI_{3(s)} \Rightarrow PH_{3(g)} + BCI_{3(g)} K_c = 6.96 \times 10^5 \text{ at } 333 \text{K}$$

Calculate the difference in the number of moles of gases, Δn .

 $\Delta n = (2 \text{ moles of gaseous products} - 0 \text{ moles of gaseous reactants}) = 2$

Substitute the values into the equation and calculate K_p .

$$K_p = (6.96 \times 10^{-5}) \times (0.0821 \times 333)^2 = 0.052$$

Note: because we do not choose to use units for K_c and K_p , we cannot cancel units for R and T. However, be careful to use the value of R consistent with the units of pressure used in the problem, and T in Kelvin.

Converting K_p to K_c

Step 1: Calculate the change in the number of moles of gases.

Step 2: Substitute Δn , R, and T into the equation and solve.

Example 2: Calculate the value of K_c at 373 K for the following reaction:

$$2NO_{(g)} + Br_{2(g)} \rightleftharpoons 2NOBr_{(g)}$$
 $K_p = 2.4$ at 373K

Calculate the change in the number of moles of gases, Δn .

 $\Delta n = (2 \text{ moles of gaseous products} - 3 \text{ moles of gaseous reactants}) = -1$

Substitute the values into the equation and calculate $K_{\rm c}$.

$$2.40 = K_c \times (0.0821 \times 373)^{-1}$$
 $K_c = 73.5$

Note: because we do not choose to use units for K_c and K_p , we cannot cancel units for R and T. However, be careful to use the value of R consistent with the units of pressure used in the problem, and T in Kelvin.