Aldehydes and Ketones

CH₃CHO

Carbonyls: Aldehydes and Ketones

If the C=O is on the end of the chain with an H attached it is an aldehyde. The name will end in -al

Carbonyls are compounds with a C=O bond. They can be either aldehydes or ketones

Intermolecular forces in carbonyls

ethanal

Pure carbonyls cannot hydrogen bond, but bond instead by permanent dipole forces.

Solubility in water

The smaller carbonyls are soluble in water because they can form hydrogen bonds with water.

Reactions of carbonyls

The C=O bond is polarised because O is more electronegative than carbon. The positive carbon atom attracts nucleophiles.

In comparison to the C=C bond in alkenes, the C=O is stronger and does not undergo addition reactions easily.

This is in contrast to the electrophiles that are attracted to the C=C.

Oxidation Reactions

Potassium dichromate K₂Cr₂O₇ is an oxidising agent that causes alcohols and aldehydes to oxidise.

Primary alcohol → aldehydes → carboxylic acid Secondary alcohol → ketones Tertiary alcohols do not oxidise

Key point: Aldehydes can be oxidised to carboxylic acids, but ketones cannot be oxidised.

Oxidation of Aldehydes

Reaction: aldehyde → carboxylic acid

Reagent: potassium dichromate (VI) solution and

dilute sulfuric acid.

Conditions: heat under reflux

$H - c - c - c - c + [O] \rightarrow H - c - c - c - c$

RCHO + [O] → RCO₂H

Full equation for oxidation

 $3CH_3CHO + Cr_2O_7^{2-} + 8H^+ \rightarrow 3 CH_3CO_2H + 4H_2O + 2Cr^{3+}$

Observation: the orange dichromate ion (Cr₂O₇²⁻) reduces to the green Cr ³⁺ ion

Aldehydes can also be oxidised using Fehling's solution or Tollen's reagent. These are used as tests for the presence of aldehyde groups

Tollen's Reagent

Reagent: Tollen's reagent formed by mixing aqueous ammonia and silver nitrate. The active substance is the complex ion of $[Ag(NH_3)_2]^+$.

Conditions: heat gently

Reaction: aldehvdes only are oxidised by Tollen's reagent into a carboxylic acid. The silver(I) ions are reduced to silver atoms

Observation: with aldehydes, a silver mirror forms coating the inside of the test tube. Ketones

result in no change.

CH₃CHO + 2Ag⁺ + H₂O → CH₃COOH + 2Ag + 2H⁺

Fehling's solution

Reagent: Fehling's solution containing blue Cu 2+ ions.

Conditions: heat gently

Reaction: aldehydes only are oxidised by Fehling's Solution into a carboxylic acid. The copper (II) ions are reduced to copper(I) oxide.

Observation: Aldehydes: Blue Cu ²⁺ ions in solution change to a red precipitate of Cu₂O. Ketones do not react.

 $CH_3CHO + 2Cu^{2+} + 2H_2O \rightarrow CH_3COOH + Cu_2O + 4H^+$

1

Reduction of carbonyls

Reagents: NaBH₄ In aqueous ethanol

Conditions: Room temperature and pressure

Reducing agents such as NaBH₄ (sodium tetrahydridoborate) or LiAlH₄ (lithium tetrahydridoaluminate) will reduce carbonyls to alcohols.

Aldehydes will be reduced to primary alcohols

Ketones will be reduced to secondary alcohols.

Nucleophilic Addition Mechanism

H+ from water or weak acid

NaBH₄ contain a source of nucleophilic hydride ions (:H⁻) which are attracted to the positive carbon in the C=O bond.

Catalytic Hydrogenation

Carbonyls can also be reduced using catalytic hydrogenation

Reagent: hydrogen and nickel catalyst

Conditions: high pressure

Example Equations

CH₃CHO + H₂ → CH₃CH₂OH

CH₃COCH₃ + H₂ → CH₃CH(OH)CH₃

Addition of hydrogen cyanide to carbonyls to form hydroxynitriles

Reaction: carbonyl → hydroxynitrile

Reagent: sodium cyanide (NaCN) and dilute sulfuric

acid.

Conditions: Room temperature and pressure

Mechanism: nucleophilic addition

The NaCN supplies the nucleophilic CN⁻ ions. The H₂SO₄ acid supplies H⁺ ions needed in second step of the mechanism

$$CH_3COCH_3+$$
 $HCN \rightarrow CH_3C(OH)(CN)CH_3$

2-hydroxy-2-methylpropanenitrile

When naming hydroxy nitriles the CN becomes part of the main chain and carbon no 1

 $CH_3CHO + HCN \rightarrow CH_3CH(OH)CN$

2-hydroxypropanenitrile

We could use HCN for this reaction but it is a toxic gas that is difficult to contain. KCN/NaCN are still, however, toxic, because of the cyanide ion.

Nucleophilic Addition Mechanism H+ from sulfuric acid H^+ O-H H_3 C H_3 C

Nucleophilic addition of HCN to aldehydes and ketones (unsymmetrical) when the trigonal planar carbonyl is approached from both sides by the HCN attacking species: results in the formation of a racemate.

Mechanism for the reaction (drawn the same for both enantiomers)

